Comparative Analysis of the Use of Osteoplastic Materials in Socket Augmentation: A Systematic Review
Abstract
1. Introduction
- −
- The technique of preserving the hole, which is carried out during tooth extraction. After tooth extraction, the intact socket well is filled with crushed bone plastic material, which can be an autograft, allograft, xenograft, or alloplastic material. The coronal part of the graft is usually covered with a membrane to help in its retention. In addition to preventing bone resorption, this technique also promotes earlier bone formation [20];
- −
- Block transplantation is a method of increasing bone volume using a block that is fixed in the area of bone deficiency using screws. Autogenous bone grafts are the main material, but block allografts are also available, which are generally less predictable than autogenous grafts [20];
- −
- The method of directed bone regeneration, which relies on the basics of guided tissue regeneration (GTR), according to which membrane is used to maintain space above the defect. In the case of GTR, this promotes the ingrowth of osteogenic cells and prevents the migration of unwanted cells from the overlying soft tissues. Resorbable and non-resorbable membranes are used for this method [21,22];
- −
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Sources of Information
2.3. Search Strategy
- Randomized clinical trials (RCTs);
- Participants aged between 18 and 80 years;
- Use of techniques for augmentation of the alveolar ridge.
- Other types of research;
- Participants under 18 years old and above 80 years old;
- Heavy smokers (>10 cigarettes per day);
- Severe comorbidity proof;
- Pregnancy and lactation;
- Other contraindications for tooth extraction.
2.4. Selection of Studies
2.5. Data Collection Process and Items
2.6. Study Risk of Bias Assessment
- −
- The randomization process;
- −
- Deviations from intended interventions;
- −
- Missing outcome data;
- −
- Measurement of the outcome;
- −
- Selection of the reported result.
| Author, Year of Publication | (Total Number of Patients, in Each Group) | Age of Patients | Assessment Criterion | Protocols | Results | 
|---|---|---|---|---|---|
| Monica Calasans-Maia [30] 2014 | 20 | 30–60 | Histological sections Histomorphometrical evaluation using Image Pro-Plus | TG1: treated with the new bovine xenograft, Osseus, and TG2: treated with the established bovine xenograft, Bio-Oss | TG1, the volume of new bone-33.7 (±7.1), for CT − 32.3 (±8.9) for the remaining biomaterial-10.7 (±16.2). TG2, the volume of new bone-19.3 (±22.6), of the CT − 49.9 (±14.1) and of the remaining biomaterial-22.6 (±7.9). | 
| Meloni et al. 2015 [31] | 30 15 + 15 | >18 | RCT, studies on human, socket preservation, results | Socket sealing with connective tissue graft (group A) vs. porcine collagen matrix (group B) | Epithelial connective tissue graft: Vertical bone loss: 0.26 mm; Horizontal: 1.60 mm.Porcine collagen matrix: Vertical: 0.31 mm; Horizontal: 1.47 mm. | 
| Marcelo Jose Uzeda, 2017 [32] | 48 12 + 12 + 12 + 12 | 18–66 | Clinical observations Histological analysis Histomorphometric evaluation XRD analysis | Clot (C), BoneCeramic (BC), Biomaterial 1 group (B1), and Biomaterial 2 group (B2). | B1 and B2 were less compact, with a roughness greater than that of BC. C group demonstrated newly formed bone interspersed with minor regions of connective tissue. | 
| Renzo Guarnieri1 2017 [33] | 30 10 + 10 + 10 | >18 | 
 | Group S: spontaneous healing. Group M: collagen membrane alone. Group GM: porcine-derived bone graft material associated with collagen membrane | The spontaneous healing group (S) exhibited the greatest resorption vertically (−2.13 mm) and horizontally (−3.96 mm). Sites treated with a collagen membrane alone (M) showed reduced resorption (−0.58 mm vertically; −0.91 mm horizontally). The most favorable outcomes were observed in sockets grafted with a porcine-derived bone and membrane (GM), with minimal vertical loss (−0.31 mm) and horizontal loss (−0.91 mm). | 
| Maiorana et al. 2017 [8] | 7 4 − F + 3 − M | >18 | Histologic and histomorphometric analysis. Radiological evaluation | Demineralized bovine bone mineral covered with a porcine-derived noncrosslinked collagen matrix | 1.21 mm—horizontally; 0.46 mm—vertically. | 
| Márcio de Carvalho Formiga 2019 [4] | 26 13 + 13 | >18 | Paired-t test to using Stata 14 CT scan | Group 1 (TG1; PTFE membrane + blood clot) Group 2 (TG2; PTFE membrane + xenogenic bone substitute biomaterial) | Buccal plate: control group—0.46 mm, test group—0.91 mm; Alveolar height: control group −0.41 mm, test group—0.35 mm | 
| Manasi Yewale 2021 [21] | 20 10 + 10 | 20–55 | CBCT images | Group A—PRF Plus membrane and Sybograf plus ™ (70% HA and 30% β TCP) bone graft. Group B—Sybograf plus ™ (70% HA and 30% βTCP) bone graft | Quantitative assessments demonstrated that Group A experienced less vertical resorption (−1.48 mm) than Group B (−1.67 mm). While horizontal reduction in the width at 1, 3, and 5 mm depths was not statistically significant, Group A showed a superior gain in socket bone density at six months (1185.30 ± 473.21 HU) versus Group B (966.60 ± 273.27 HU). | 
| Yuanyuan Sun, 2023 [17] | 40 15 + 15 + 10 | >18 | Radiographic measurement Histomorphological examination Statistical analysis | Group 1: rhBMP-2/BioCaP/β-TCP Group 2: β-TCP Group 3: healing without material | Higher values of bone area in Group1. | 
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias Within Studies
4. Discussion
Review Study Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madi, M.; Almindil, I.; Alrassasi, M.; Alramadan, D.; Zakaria, O.; Alagl, A.S. Cone-Beam Computed Tomography and Histological Findings for Socket Preservation Techniques Using Different Grafting Materials: A Systematic Review. J. Funct. Biomater. 2023, 14, 282. [Google Scholar] [CrossRef]
- Stumbras, A.; Kuliesius, P.; Januzis, G.; Juodzbalys, G. Alveolar Ridge Preservation after Tooth Extraction Using Different Bone Graft Materials and Autologous Platelet Concentrates: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, e2. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.A.; Imanian, M.; Alkaabi, S.; Al-Sabri, G.; Forouzanfar, T.; Helder, M. A Systematic Review and Meta-Analysis on the Use of Regenerative Graft Materials for Socket Preservation in Randomized Clinical Trials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024, 138, 702–718. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Formiga, M.; Dayube, U.R.C.; Chiapetti, C.K.; de Rossi Figueiredo, D.; Shibli, J.A. Socket Preservation Using a (Dense) PTFE Barrier with or without Xenograft Material: A Randomized Clinical Trial. Materials 2019, 12, 2902. [Google Scholar] [CrossRef]
- Chappuis, V.; Engel, O.; Reyes, M.; Shahim, K.; Nolte, L.-P.; Buser, D. Ridge Alterations Post-Extraction in the Esthetic Zone: A 3D Analysis with CBCT. J. Dent. Res. 2013, 92, 195S–201S. [Google Scholar] [CrossRef]
- Passarelli, P.C.; Pagnoni, S.; Piccirillo, G.B.; Desantis, V.; Benegiamo, M.; Liguori, A.; Papa, R.; Papi, P.; Pompa, G.; D’Addona, A. Reasons for Tooth Extractions and Related Risk Factors in Adult Patients: A Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 2575. [Google Scholar] [CrossRef]
- Hämmerle, C.H.F.; Araújo, M.G.; Simion, M.; Osteology Consensus Group 2011. Evidence-Based Knowledge on the Biology and Treatment of Extraction Sockets. Clin. Oral Implant. Res. 2012, 23 (Suppl. S5), 80–82. [Google Scholar] [CrossRef]
- Maiorana, C.; Poli, P.P.; Deflorian, M.; Testori, T.; Mandelli, F.; Nagursky, H.; Vinci, R. Alveolar Socket Preservation with Demineralised Bovine Bone Mineral and a Collagen Matrix. J. Periodontal Implant. Sci. 2017, 47, 194–210. [Google Scholar] [CrossRef]
- Juodzbalys, G.; Stumbras, A.; Goyushov, S.; Duruel, O.; Tözüm, T.F. Morphological Classification of Extraction Sockets and Clinical Decision Tree for Socket Preservation/Augmentation after Tooth Extraction: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, e3. [Google Scholar] [CrossRef]
- Bartee, B.K. Extraction Site Reconstruction for Alveolar Ridge Preservation. Part 1: Rationale and Materials Selection. J. Oral Implantol. 2001, 27, 187–193. [Google Scholar] [CrossRef]
- Atieh, M.A.; Alsabeeha, N.H.; Payne, A.G.; Ali, S.; Faggion, C.M.J.; Esposito, M. Interventions for Replacing Missing Teeth: Alveolar Ridge Preservation Techniques for Dental Implant Site Development. Cochrane Database Syst. Rev. 2021, 4, CD010176. [Google Scholar] [CrossRef]
- Cardaropoli, G.; Araújo, M.; Lindhe, J. Dynamics of Bone Tissue Formation in Tooth Extraction Sites. An Experimental Study in Dogs. J. Clin. Periodontol. 2003, 30, 809–818. [Google Scholar] [CrossRef]
- Darby, I.; Chen, S.T.; Buser, D. Ridge Preservation Techniques for Implant Therapy. Int. J. Oral Maxillofac. Implant. 2009, 24, 260–271. [Google Scholar]
- Mohanasatheesh, S.; Balaji, A.; Subramaniam, D.; Ganapathy, V.; Rajendran, K.P.; Farjana, N. Biphasic Calcium Phosphate in the Extraction Socket Preservation: A Systematic Review. J. Pharm. Bioallied Sci. 2024, 16, S1007–S1011. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Ma, J.-X.; Xu, L.; Gu, X.-S.; Ma, X.-L. Biodegradable Materials for Bone Defect Repair. Mil. Med. Res. 2020, 7, 54. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Z.; Liu, Y.; Yu, J.; Wang, X.; Tan, Z.; Ye, X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front. Cell Dev. Biol. 2021, 9, 665813. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Wang, M.; Wei, L.; Pieterse, H.; Wu, Y.; Liu, Y. Radiographic and Histological Evaluation of Bone Formation Induced by rhBMP-2-Incorporated Biomimetic Calcium Phosphate Material in Clinical Alveolar Sockets Preservation. Int. J. Implant. Dent. 2023, 9, 37. [Google Scholar] [CrossRef]
- Greenstein, G.; Carpentieri, J.R. Utilization of D-PTFE Barriers for Post-Extraction Bone Regeneration in Preparation for Dental Implants. Compend. Contin. Educ. Dent. 2015, 36, 465–473. [Google Scholar]
- Lindhe, J.; Cecchinato, D.; Donati, M.; Tomasi, C.; Liljenberg, B. Ridge Preservation with the Use of Deproteinized Bovine Bone Mineral. Clin. Oral Implant. Res. 2014, 25, 786–790. [Google Scholar] [CrossRef]
- Allegrini, S.; Koening, B.; Allegrini, M.R.F.; Yoshimoto, M.; Gedrange, T.; Fanghaenel, J.; Lipski, M. Alveolar Ridge Sockets Preservation with Bone Grafting—Review. Ann. Acad. Med. Stetin. 2008, 54, 70–81. [Google Scholar]
- Yewale, M.; Bhat, S.; Kamath, A.; Tamrakar, A.; Patil, V.; Algal, A.S. Advanced Platelet-Rich Fibrin plus and Osseous Bone Graft for Socket Preservation and Ridge Augmentation—A Randomized Control Clinical Trial. J. Oral Biol. Craniofac. Res. 2021, 11, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Vroom, M.G.; Gründemann, L.J.; Gallo, P. Clinical Classification of Healing Complications and Management in Guided Bone Regeneration Procedures with a Nonresorbable D-PTFE Membrane. Int. J. Periodontics Restor. Dent. 2022, 42, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Werbitt, M.J.; Goldberg, P.V. Immediate implantation. Preservation of bone volume and osseous regeneration. J. Parodontol. 1991, 10, 157–166. [Google Scholar]
- Lee, J.; Park, D.; Koo, K.-T.; Seol, Y.-J.; Lee, Y.-M. Validity of a Regenerative Procedure for a Minor Bone Defect with Immediate Implant Placement: A Systematic Review and Meta-Analysis. Acta Odontol. Scand. 2019, 77, 99–106. [Google Scholar] [CrossRef]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone Grafts: Which Is the Ideal Biomaterial? J. Clin. Periodontol. 2019, 46 (Suppl. S21), 92–102. [Google Scholar] [CrossRef] [PubMed]
- Alenazi, A.; Alotaibi, A.A.; Aljaeidi, Y.; Alqhtani, N.R. The Need for Socket Preservation: A Systematic Review. J. Med. Life 2022, 15, 309–312. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. PLOS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- PRISMA 2020 Check List; PRISMA: Sunnyvale, CA, USA, 2020.
- Cumpston, M.S.; McKenzie, J.E.; Welch, V.A.; Brennan, S.E. Strengthening Systematic Reviews in Public Health: Guidance in the Cochrane Handbook for Systematic Reviews of Interventions, 2nd Edition. J. Public Health 2022, 44, e588–e592. [Google Scholar] [CrossRef]
- Calasans-Maia, M.; Resende, R.; Fernandes, G.; Calasans-Maia, J.; Alves, A.T.; Granjeiro, J.M. A Randomized Controlled Clinical Trial to Evaluate a New Xenograft for Alveolar Socket Preservation. Clin. Oral Implant. Res. 2014, 25, 1125–1130. [Google Scholar] [CrossRef]
- Meloni, S.M.; Tallarico, M.; Lolli, F.M.; Deledda, A.; Pisano, M.; Jovanovic, S.A. Postextraction Socket Preservation Using Epithelial Connective Tissue Graft vs Porcine Collagen Matrix. 1-Year Results of a Randomised Controlled Trial. Eur. J. Oral Implantol. 2015, 8, 39–48. [Google Scholar]
- Uzeda, M.J.; de Brito Resende, R.F.; Sartoretto, S.C.; Alves, A.T.N.N.; Granjeiro, J.M.; Calasans-Maia, M.D. Randomized Clinical Trial for the Biological Evaluation of Two Nanostructured Biphasic Calcium Phosphate Biomaterials as a Bone Substitute. Clin. Implant. Dent. Relat. Res. 2017, 19, 802–811. [Google Scholar] [CrossRef]
- Guarnieri, R.; Stefanelli, L.; De Angelis, F.; Mencio, F.; Pompa, G.; Di Carlo, S. Extraction Socket Preservation Using Porcine-Derived Collagen Membrane Alone or Associated with Porcine-Derived Bone. Clinical Results of Randomized Controlled Study. J. Oral Maxillofac. Res. 2017, 8, e5. [Google Scholar] [CrossRef] [PubMed]
- Nazirkar, G.; Singh, S.; Dole, V.; Nikam, A. Effortless Effort in Bone Regeneration: A Review. J. Int. Oral Health 2014, 6, 120–124. [Google Scholar] [PubMed]
- Simon, B.I.; Zatcoff, A.L.; Kong, J.J.W.; O’Connell, S.M. Clinical and Histological Comparison of Extraction Socket Healing Following the Use of Autologous Platelet-Rich Fibrin Matrix (PRFM) to Ridge Preservation Procedures Employing Demineralized Freeze Dried Bone Allograft Material and Membrane. Open Dent. J. 2009, 3, 92–99. [Google Scholar] [CrossRef]
- Plachokova, A.S.; Nikolidakis, D.; Mulder, J.; Jansen, J.A.; Creugers, N.H.J. Effect of Platelet-Rich Plasma on Bone Regeneration in Dentistry: A Systematic Review. Clin. Oral Implant. Res. 2008, 19, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Kutkut, A.; Andreana, S.; Kim, H.; Monaco, E. Extraction Socket Preservation Graft before Implant Placement with Calcium Sulfate Hemihydrate and Platelet-Rich Plasma: A Clinical and Histomorphometric Study in Humans. J. Periodontol. 2012, 83, 401–409. [Google Scholar] [CrossRef]
- Yao, C.; Pripatnanont, P.; Zhang, J.; Suttapreyasri, S. Performance of a Multiphase Bioactive Socket Plug with a Barrier Function for Alveolar Ridge Preservation. Biomed. Mater. 2024, 19, 055009. [Google Scholar] [CrossRef]
- Shi, P.; Zhou, W.; Dong, J.; Li, S.; Lv, P.; Liu, C. Scaffolds of Bioactive Glass (Bioglass®) Combined with Recombinant Human Bone Morphogenetic Protein -9 (rhBMP-9) for Tooth Extraction Site Preservation. Heliyon 2022, 8, e08796. [Google Scholar] [CrossRef]
- Rocci, A.; Rocci, M.; Scoccia, A.; Martignoni, M.; Gottlow, J.; Sennerby, L. Immediate Loading of Maxillary Prostheses Using Flapless Surgery, Implant Placement in Predetermined Positions, and Prefabricated Provisional Restorations. Part 2: A Retrospective 10-Year Clinical Study. Int. J. Oral Maxillofac. Implant. 2012, 27, 1199–1204. [Google Scholar]
- Jafer, M.A.; Salem, R.M.; Hakami, F.B.; Ageeli, R.E.; Alhazmi, T.A.; Bhandi, S.; Patil, S. Techniques for Extraction Socket Regeneration for Alveolar Ridge Preservation. J. Contemp. Dent. Pract. 2022, 23, 245–250. [Google Scholar]
- Norton, M.R.; Odell, E.W.; Thompson, I.D.; Cook, R.J. Efficacy of Bovine Bone Mineral for Alveolar Augmentation: A Human Histologic Study. Clin. Oral Implant. Res. 2003, 14, 775–783. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Ku, J.-K. Extraction Socket Preservation. J. Korean Assoc. Oral Maxillofac. Surg. 2020, 46, 435–439. [Google Scholar] [CrossRef]
- Hämmerle, C.H.F.; Jung, R.E.; Yaman, D.; Lang, N.P. Ridge Augmentation by Applying Bioresorbable Membranes and Deproteinized Bovine Bone Mineral: A Report of Twelve Consecutive Cases. Clin. Oral Implant. Res. 2008, 19, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Labrador, L.; Molinero-Mourelle, P.; Pérez-González, F.; Saez-Alcaide, L.M.; Brinkmann, J.C.-B.; Martínez, J.L.-Q.; Martínez-González, J.M. Clinical Performance of Alveolar Ridge Augmentation with Xenogeneic Bone Block Grafts versus Autogenous Bone Block Grafts. A Systematic Review. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Al-Nawas, B.; Schiegnitz, E. Augmentation Procedures Using Bone Substitute Materials or Autogenous Bone—A Systematic Review and Meta-Analysis. Eur. J. Oral Implantol. 2014, 7 (Suppl. S2), S219–S234. [Google Scholar]
- Chiapasco, M.; Di Martino, G.; Anello, T.; Zaniboni, M.; Romeo, E. Fresh Frozen versus Autogenous Iliac Bone for the Rehabilitation of the Extremely Atrophic Maxilla with Onlay Grafts and Endosseous Implants: Preliminary Results of a Prospective Comparative Study. Clin. Implant. Dent. Relat. Res. 2015, 17 (Suppl. S1), e251–e266. [Google Scholar] [CrossRef]
- Sbordone, C.; Sbordone, L.; Toti, P.; Martuscelli, R.; Califano, L.; Guidetti, F. Volume Changes of Grafted Autogenous Bone in Sinus Augmentation Procedure. J. Oral Maxillofac. Surg. 2011, 69, 1633–1641. [Google Scholar] [CrossRef]
- Fukuba, S.; Okada, M.; Nohara, K.; Iwata, T. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and Prospects. Materials 2021, 14, 1096. [Google Scholar] [CrossRef] [PubMed]
- Kloss, F.R.; Offermanns, V.; Kloss-Brandstätter, A. Comparison of Allogeneic and Autogenous Bone Grafts for Augmentation of Alveolar Ridge Defects-A 12-Month Retrospective Radiographic Evaluation. Clin. Oral Implant. Res. 2018, 29, 1163–1175. [Google Scholar] [CrossRef]
- Al-Abedalla, K.; Torres, J.; Cortes, A.R.G.; Wu, X.; Nader, S.A.; Daniel, N.; Tamimi, F. Bone Augmented With Allograft Onlays for Implant Placement Could Be Comparable With Native Bone. J. Oral Maxillofac. Surg. 2015, 73, 2108–2122. [Google Scholar] [CrossRef]
- Jambhekar, S.; Kernen, F.; Bidra, A.S. Clinical and Histologic Outcomes of Socket Grafting after Flapless Tooth Extraction: A Systematic Review of Randomized Controlled Clinical Trials. J. Prosthet. Dent. 2015, 113, 371–382. [Google Scholar] [CrossRef]
- Khan, W.S.; Rayan, F.; Dhinsa, B.S.; Marsh, D. An Osteoconductive, Osteoinductive, and Osteogenic Tissue-Engineered Product for Trauma and Orthopaedic Surgery: How Far Are We? Stem Cells Int. 2012, 2012, 236231. [Google Scholar] [CrossRef]
- Ghasemi-Mobarakeh, L.; Kolahreez, D.; Ramakrishna, S.; Williams, D. Key Terminology in Biomaterials and Biocompatibility. Curr. Opin. Biomed. Eng. 2019, 10, 45–50. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, T.; Hu, W.; Zhao, L.; Wang, C.; Chung, K.-H. Socket Preservation Following Extraction of Molars with Severe Periodontitis. Int. J. Periodontics Restor. Dent. 2021, 41, 269–275. [Google Scholar] [CrossRef]
- Alfonsi, F.; Borgia, V.; Iezzi, G.; Piattelli, A.; Covani, U.; Tonelli, P.; Barone, A. Molecular, Cellular and Pharmaceutical Aspects of Filling Biomaterials During the Management of Extraction Sockets. Curr. Pharm. Biotechnol. 2017, 18, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Donos, N.; Akcali, A.; Padhye, N.; Sculean, A.; Calciolari, E. Bone Regeneration in Implant Dentistry: Which Are the Factors Affecting the Clinical Outcome? Periodontology 2000 2023, 93, 26–55. [Google Scholar] [CrossRef] [PubMed]
- Colombo, J.S.; Satoshi, S.; Okazaki, J.; Crean, S.J.; Sloan, A.J.; Waddington, R.J. In Vivo Monitoring of the Bone Healing Process around Different Titanium Alloy Implant Surfaces Placed into Fresh Extraction Sockets. J. Dent. 2012, 40, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Schorn, L.; Sine, A.; Berr, K.; Handschel, J.; Depprich, R.; Kübler, N.R.; Sproll, C.; Rana, M.; Lommen, J. Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells. Materials 2022, 15, 4779. [Google Scholar] [CrossRef]
- Rodrigues, M.T.V.; Guillen, G.A.; Macêdo, F.G.C.; Goulart, D.R.; Nóia, C.F. Comparative Effects of Different Materials on Alveolar Preservation. J. Oral Maxillofac. Surg. 2023, 81, 213–223. [Google Scholar] [CrossRef]

| Study | The Randomization Process | Deviation from the Intended Interventions | Missing Outcome Data | Measurement of Outcome Data | Selection of the Reported Result | 
|---|---|---|---|---|---|
| Monica Calasans-Maia, 2014 [30] | Low risk | Low risk | Low risk | Low risk | Low risk | 
| Meloni et al., 2015 [31] | Low risk | Low risk | Low risk | Low risk | Low risk | 
| Marcelo Jose Uzeda, 2017 [32] | Some concerns | Low risk | Low risk | Some concerns | Low risk | 
| Renzo Guarnieri, 2017 [33] | Some concerns | Low risk | Low risk | Some concerns | Low risk | 
| Maiorana et al., 2017 [8] | Some concerns | Low risk | Low risk | Some concerns | Low risk | 
| Márcio de Carvalho Formiga, 2019 [4] | Low risk | Low risk | Low risk | Low risk | Low risk | 
| Manasi Yewale, 2021 [21] | Low risk | Low risk | Low risk | Low risk | Low risk | 
| Yuanyuan Sun, 2023 [17] | Low risk | Low risk | Low risk | Low risk | Low risk | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sologova, D.; Kazaryan, A.; Gor, I.; Sologova, S.; Smolyarchuk, E.; Grigorevskikh, E.; Anikin, G.; Mirzoeva, A.; Albakova, K.; Glazunova, E.; et al. Comparative Analysis of the Use of Osteoplastic Materials in Socket Augmentation: A Systematic Review. Biomimetics 2025, 10, 722. https://doi.org/10.3390/biomimetics10110722
Sologova D, Kazaryan A, Gor I, Sologova S, Smolyarchuk E, Grigorevskikh E, Anikin G, Mirzoeva A, Albakova K, Glazunova E, et al. Comparative Analysis of the Use of Osteoplastic Materials in Socket Augmentation: A Systematic Review. Biomimetics. 2025; 10(11):722. https://doi.org/10.3390/biomimetics10110722
Chicago/Turabian StyleSologova, Diana, Aida Kazaryan, Ilana Gor, Susanna Sologova, Elena Smolyarchuk, Ekaterina Grigorevskikh, George Anikin, Aida Mirzoeva, Khadi Albakova, Ekaterina Glazunova, and et al. 2025. "Comparative Analysis of the Use of Osteoplastic Materials in Socket Augmentation: A Systematic Review" Biomimetics 10, no. 11: 722. https://doi.org/10.3390/biomimetics10110722
APA StyleSologova, D., Kazaryan, A., Gor, I., Sologova, S., Smolyarchuk, E., Grigorevskikh, E., Anikin, G., Mirzoeva, A., Albakova, K., Glazunova, E., Skachkova, M., Petruk, P., Presnyakov, E., Saba, N., & Diachkova, E. (2025). Comparative Analysis of the Use of Osteoplastic Materials in Socket Augmentation: A Systematic Review. Biomimetics, 10(11), 722. https://doi.org/10.3390/biomimetics10110722
 
        




 
       