Study on the Properties and Design Applications of Polyester–Cotton Matrix Mycelium Composite Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Equipment
2.2. Material Preparation
2.3. Research on the Ratio of Polyester–Cotton Matrix to Crop Matrix
2.4. Experimental Sample Preparation
2.5. Experimental Test
2.5.1. Hyphal Coverage Rate
2.5.2. Mechanical Properties Testing
- (1)
- Compression Strength Testing
- (2)
- Flexural Strength Testing
- (3)
- Impact Performance Testing
2.5.3. Determination of Water Vapour Transmittance
2.5.4. Determination of Soil Degradation Weight Loss Rate
2.6. Statistics and Analysis
3. Results and Discussion
3.1. Results
3.1.1. Mycelium Coverage Rate
3.1.2. Mechanical Properties
- (1)
- Compression Strength
- (2)
- Flexural Strength
- (3)
- Impact Performance
3.1.3. Water Vapour Transmittance
3.1.4. Soil Degradation
3.1.5. ANOVA Analysis
3.2. Discussion
4. Design Applications
4.1. User Demand Survey
4.2. Product Application Scenarios
4.3. Design Practice
4.3.1. Inspiration Source and Transformation of Design Elements
4.3.2. Product Design
4.3.3. Experience Mode
4.4. Experience Programme and Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subramanian, K.; Chopra, S.S.; Cakin, E.; Li, X.T.; Lin, C.S.K. Environmental life cycle assessment of textile bio-recycling—Valorizing cotton–polyester textile waste to pet fiber and glucose syrup. Resour. Conserv. Recycl. 2020, 161, 104989. [Google Scholar] [CrossRef]
- Shehzad, A.K.; Sheraz, A.; Ali, A.; Wardah, A.; Zulfiqar, A.; Tanveer, H. Influence and comparison of emerging techniques of yarn manufacturing on physical–mechanical properties of polyester-/cotton-blended yarns and their woven fabrics. J. Text. Inst. 2020, 111, 555–564. [Google Scholar]
- Matsumura, M.; Inagaki, J.; Yamada, R.; Tashiro, N.; Ito, K.; Sasaki, M. Material Separation from Polyester/Cotton Blended Fabrics Using Hydrothermal Treatment. ACS Omega 2024, 9, 13125–13133. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Islam, M.T.; Wang, L.J.; Padhye, R. Comparative energy demand and carbon footprint analysis of textile waste management systems in Australia. Environ. Sci. Pollut. Res. 2025, 32, 8529–8546. [Google Scholar] [CrossRef] [PubMed]
- Loshin, A.; Samarina, T.; Vepsäläinen, V.; Tervonen, A.; Laatikainen, O. Valorisation scenarios of blended post-consumer textile waste with the focus on thermal processing strategies. Waste Manag. 2025, 204, 114966. [Google Scholar] [CrossRef] [PubMed]
- Wojnowska-Baryła, I.; Bernat, K.; Zaborowska, M. Strategies of Recovery and Organic Recycling Used in Textile Waste Management. Int. J. Environ. Res. Public Health 2022, 19, 5859. [Google Scholar] [CrossRef]
- Ndagano, U.N.; Cahill, L.; Smullen, C.; Gaughran, J.; Kelleher, S.M. The Current State-of-the-Art of the Processes Involved in the Chemical Recycling of Textile Waste. Molecules 2025, 30, 299. [Google Scholar] [CrossRef]
- Andini, E.; Bhalode, P.; Gantert, E.; Sadula, S.; Vlachos, D.G. Chemical recycling of mixed textile waste. Sci. Adv. 2024, 10, eado6827. [Google Scholar] [CrossRef]
- Barta, D.G.; Simion, I.; Tiuc, A.E.; Vasile, O. Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy. Materials 2024, 17, 404. [Google Scholar] [CrossRef]
- Balaeș, T.; Radu, B.M.; Tănase, C. Mycelium-Composite Materials—A Promising Alternative to Plastics? J. Fungi 2023, 9, 210. [Google Scholar] [CrossRef]
- Jones, M.; Bhat, T.; Kandare, E.; Thomas, A.; Joseph, P.; Dekiwadia, C.; Yuen, R.; John, S.; Ma, J.; Wang, C.H. Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium—Biomass Composite Materials. Sci. Rep. 2018, 8, 17583. [Google Scholar] [CrossRef] [PubMed]
- Angelova, G.V.; Brazkova, M.S.; Krastanov, A.I. Renewable mycelium based composite–sustainable approach for lignocellulose waste recovery and alternative to synthetic materials—A review. Z. Naturforsch. C J. Biosci. 2021, 76, 431–442. [Google Scholar] [CrossRef]
- Sayfutdinova, A.; Samofalova, I.; Barkov, A.; Cherednichenko, K.; Rimashevskiy, D.; Vinokurov, V. Structure and Properties of Cellulose/Mycelium Biocomposites. Polymers 2022, 14, 1519. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.S.; Ionescu, D.; Grossart, H.P. Tapping into fungal potential: Biodegradation of plastic and rubber by potent Fungi. Sci. Total Environ. 2024, 934, 173188. [Google Scholar] [CrossRef] [PubMed]
- Bruscato, C.; Malvessi, E.; Brandalise, R.N.; Camassola, M. High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. J. Clean. Prod. 2019, 234, 225–232. [Google Scholar] [CrossRef]
- Odigbo, C.; Adenipekun, C.; Oladosu, I.; Ogunjobi, A. Polyethylene terephthalate (PET) biodegradation by Pleurotus ostreatus and Pleurotus pulmonarius. Environ. Monit. Assess. 2023, 195, 585. [Google Scholar] [CrossRef]
- Butu, A.; Rodino, S.; Miu, B.; Butu, M. Mycelium-based materials for the ecodesign of bioeconomy. Dig. J. Nanomater. Biostruct. 2020, 15, 1129–1140. [Google Scholar] [CrossRef]
- Qiu, J.F.; Li, G.H.; Lü, P.F.; Zhang, H.Q. Study on Compressive Mechanical Properties of Waste Cotton Fiber Biocomposites. Eng. Plast. Appl. 2015, 43, 77–80. [Google Scholar]
- Qiu, J.F. Preparation and Properties of Textile Waste Biocomposites. Master’s Thesis, Jiangnan University, Wuxi, China, 2015. [Google Scholar]
- Huffman, E. Mycelium. Available online: https://www.futurematerialsbank.com/material/mycelium-18/ (accessed on 30 December 2024).
- Saini, R.; Kaur, G.; Brar, S.K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2024, 15, 683–689. [Google Scholar] [CrossRef]
- Cai, J.M.; Han, J.S.; Ge, F.; Lin, Y.Z.; Pan, J.L.; Ren, A. Development of impact-resistant mycelium-based composites (MBCs) with agricultural waste straws. Constr. Build. Mater. 2023, 389, 131730. [Google Scholar] [CrossRef]
- Mohseni, A.; Vieira, F.R.; Pecchia, J.A.; Gürsoy, B. Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination. Biomimetics 2023, 8, 257. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Soh, E.; Teoh, J.H.; Leong, B.; Xing, T.R.; Le Ferrand, H. 3D Printing of Mycelium Engineered Living Materials Using a Waste-Based Ink and Non-Sterile Conditions. Mater. Des. 2023, 236, 112481. [Google Scholar] [CrossRef]
- Rahman, A.M.; Bhardwaj, A.; Pei, Z.J.; Ufodike, C.; Castell-Perez, E. The 3D Printing of Biomass–Fungi Composites: Effects of Waiting Time after Mixture Preparation on Mechanical Properties, Rheological Properties, Minimum Extrusion Pressure, and Print Quality of the Prepared Mixture. J. Compos. Sci. 2022, 6, 237. [Google Scholar] [CrossRef]
- Gantenbein, S.; Colucci, E.; Käch, J.; Trachsel, E.; Coulter, F.B.; Rühs, P.A.; Masania, K.; Studart, A.R. Three-Dimensional Printing of Mycelium Hydrogels into Living Complex Materials. Nat. Mater. 2022, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, E.; Narayan, S.; Lingam, D.; Blundell, R. Mycelium-based composites: An updated comprehensive overview. Biotechnol. Adv. 2025, 79, 108517. [Google Scholar] [CrossRef] [PubMed]
- Lingam, D.; Narayan, S.; Mamun, K.; Charan, D. Engineered mycelium-based composite materials: Comprehensive study of various properties and applications. Constr. Build. Mater. 2023, 391, 131841. [Google Scholar] [CrossRef]
- Lin, N.; Taghizadehmakoei, A.; Polovina, L.; McLean, I.; Santana Martínez, J.C.; Naese, C.; Moraes, C.; Hallam, S.J.; Dahmen, J. 3D Bioprinting of Food Grade Hydrogel Infused with Living Pleurotus ostreatus Mycelium in Non-Sterile Conditions. ACS Appl. Bio Mater. 2024, 7, 2982–2992. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Jinanukul, P.; Suwannarach, N.; Kumla, J.; Thamjaree, W.; Teeraphantuvat, T.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S. Sustainable Innovation: Fabrication and Characterization of Mycelium-Based Green Composites for Modern Interior Materials Using Agro-Industrial Wastes and Different Species of Fungi. Polymers 2024, 16, 550. [Google Scholar] [CrossRef]
- Alima, N.; Snooks, R.; McCormack, J. Bio Scaffolds: The orchestration of biological growth through robotic intervention. Int. J. Intell. Robot. Appl. 2022, 6, 522–529. [Google Scholar] [CrossRef]
- Darwis, W.; Wibowo, R.H.; Sipriyadi; Astuti, R.R.S.; Sitorus, L.W. The Influence of Green, Corn, and Rice Seed Media Composition on Mycelium Growth of F2 Main Seeds (Pleurotus ostreatus (Jacq. Ex Fr) Kummer). In Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020), Online, 23 June 2021. [Google Scholar]
- Ghazvinian, A.; Gürsoy, B. Mycelium-Based Composite Graded Materials: Assessing the Effects of Time and Substrate Mixture on Mechanical Properties. Biomimetics 2022, 7, 48. [Google Scholar] [CrossRef]
- Magaña Amaya, J.A.; Shimizu, N. Digital Analysis of Mycelium Growth and Mycelium Density In Vitro of Pleurotus ostreatus with Submerged Fermentation as Substrate Treatment. Mycobiology 2025, 53, 214–224. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and mechanics of fungal mycelium. Sci. Rep. 2017, 7, 13070, Erratum in Sci. Rep. 2018, 8, 4206. [Google Scholar] [CrossRef] [PubMed]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- ISO 604:2002; Plastics—Determination of Compressive Properties. International Organization for Standardization: Geneva, Switzerland, 2002.
- Răut, I.; Călin, M.; Vuluga, Z.; Oancea, F.; Paceagiu, J.; Radu, N.; Doni, M.; Alexandrescu, E.; Purcar, V.; Gurban, A.M.; et al. Fungal Based Biopolymer Composites for Construction Materials. Materials 2021, 14, 2906. [Google Scholar] [CrossRef]
- ISO 178:2019; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- Khouaja, A.; Koubaa, A.; Ben Daly, H. Mechanical and morphological properties of cellulose biocomposites. Chemosphere 2025, 379, 144415. [Google Scholar] [CrossRef]
- Teeraphantuvat, T.; Jatuwong, K.; Jinanukul, P.; Thamjaree, W.; Lumyong, S.; Aiduang, W. Improving the Physical and Mechanical Properties of Mycelium-Based Green Composites Using Paper Waste. Polymers 2024, 16, 262. [Google Scholar] [CrossRef]
- ISO 7765-1:1988; Plastics Film and Sheeting—Determination of Impact Resistance by the Free-Falling Dart Method. International Organization for Standardization: Geneva, Switzerland, 1988.
- ISO 4211-4; Furniture-Tests for Surfaces—Part 4: Assessment of Resistance to Impact. International Organization for Standardization: Geneva, Switzerland, 1988.
- GB/T 1037-2021; Test Method for Water Vapor Transmission of Plastic Film and Sheet—Desiccant Method and Water Method. Standardization Administration of China: Beijing, China, 2021.
- GB/T 19275-2003; Evaluation of the Potential Biodegradability and Disintegration of Plastic Materials by the Action of the Specific Microorganisms. Standardization Administration of China: Beijing, China, 2003.
- Jiang, L.; Walczyk, D.; Mooney, L.; Putney, S. Manufacturing of Mycelium-Based Biocomposites. In Proceedings of the International SAMPE Technical Conference, Long Beach, CA, USA, 6–9 May 2013. [Google Scholar]
- Duan, C.; Tian, F.H.; Yao, L.; Lv, J.H.; Jia, C.W.; Li, C.T. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa edulis. Sci. Rep. 2022, 12, 18379. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, S.Y.; Hu, S.J.; Cui, X.; Shi, Z.W.; Wu, J.; Zhang, Y.T.; Kong, W.L. Lignocellulose degradation pattern and structural change of the sawdust substrate and enzyme secretion by Lentinula edodes during its production. Wood Sci. Technol. 2023, 57, 389–405. [Google Scholar] [CrossRef]
- Jaskowska-Lemańska, J.; Kucharska, M.; Matuszak, J.; Nowak, P.; Łukaszczyk, W. Selected Properties of Self-Compacting Concrete with Recycled PET Aggregate. Materials 2022, 15, 2566. [Google Scholar] [CrossRef]
- Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Manag. 2009, 29, 2707–2716. [Google Scholar] [CrossRef]
- Yi, K.X.; Huang, J.H.; Li, X.; Li, S.Z.; Pang, H.L.; Liu, Z.X.; Zhang, W.; Liu, S.; Liu, C.H.; Shu, W.L. Long-term impacts of polyethylene terephthalate (PET) microplastics in membrane bioreactor. J. Environ. Manag. 2022, 323, 116234. [Google Scholar] [CrossRef]
- Demir, T.; Wei, L.Y.; Nitta, N.; Yushin, G.; Brown, P.J.; Luzinov, I. Toward a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellency of Polyethylene Terephthalate (PET) Films Modified with Perfluoropolyether-Based Polyesters. ACS Appl. Mater. Interfaces 2017, 9, 24318–24330. [Google Scholar] [CrossRef]
- Guo, Y.J.; Chen, F.; Luo, J.W.; Qiao, M.F.; Zeng, W.; Li, J.; Xu, W.L. The DUF288 domain containing proteins GhSTLs participate in cotton fiber cellulose synthesis and impact on fiber elongation. Plant Sci. 2022, 316, 111168. [Google Scholar] [CrossRef] [PubMed]
- Palit, P.; Minkara, M.; Abida, M.; Marwa, S.; Sen, C.; Roy, A.; Pasha, M.R.; Mosae, P.S.; Saha, A.; Ferdoush, J. PlastiCRISPR: Genome Editing-Based Plastic Waste Management with Implications in Polyethylene Terephthalate (PET) Degradation. Biomolecules 2025, 15, 684. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.R.; Chen, Y.X.; Zhang, L.Q.; Wu, J.Z.; Zeng, X.H.; Shi, X.G.; Liu, L.M.; Chen, J.F. A comprehensive review on enzymatic biodegradation of polyethylene terephthalate. Environ. Res. 2023, 240, 117427. [Google Scholar] [CrossRef] [PubMed]
Type of Equipment | Name of Device | Pictures of Equipment | Model Number | Equipment Manufacturer |
---|---|---|---|---|
Crushing equipment | Grinding machine | AF-03S | Aoli Trodutional Chinese Medicine Machinery Co. Ltd., Wenling City, China | |
Sterilisation equipment | Portable pressure steam sterilisation pot | XFS-300 | Shangyi Scientific Instrument Co. Ltd., Shanghai, China. | |
Equipment for inoculation | Bechtop | VD650 | ShangGuang Instrument Manufacturing Co. Ltd., Shanghai, China. | |
Printing equipment | Automatic injection device | QHZS-001A | Jiaozuo Yanhang Power Technology Co. Ltd., Jiaozuo City, China. | |
Writing machine | LHB-24 | Jinqian Intelligent Technology Co. Ltd., Jinhua City, China. | ||
Equipment for cultivation | Constant temperature and humidity incubator | HWS-250 | Shangyu Yuanyang instrument business department, Shaoxing, China | |
Drying equipment | Electrothermal constant temperature air drying oven | SN-101-0A | Shangyi Scientific Instrument Co. Ltd., Shanghai, China. |
Group | Yarn to Crop Substrate Ratio | Yarn and Crop Content (g) | Type of Yarn |
---|---|---|---|
Experiment A-Cotton | 1:1 | 50 g of yarn | 100% cotton |
Experimental A-Polyester | 50 g of crop | 100% polyester | |
Experimental B-Cotton | 1:3 | 25 g of yarn | 100% cotton |
Experimental B-Polyester | 75 g of crop | 100% polyester | |
Experimental C-Cotton | 1:5 | 17 g of yarn | 100% cotton |
Experimental C-Polyester | 83 g of crop | 100% polyester | |
Experimental D-Cotton | 5:1 | 83 g yarn | 100% cotton |
Experimental D-Polyester | 17 g of crop | 100% polyester | |
Experimental E-Cotton | 3:1 | 75 g of yarn | 100% cotton |
Experimental E-Polyester | 25 g of crop | 100% polyester |
Yarn to Crop Substrate Ratio | Experimental Groups | Final Growth Image | Greyscale Image | Mean Mycelium Coverage |
---|---|---|---|---|
1:1 | Experimental group A—100% cotton | 82.87% | ||
Mycelium coverage rate | 77.27% 92.59% 78.75% | |||
Experimental group A—100% polyester | 48.67% | |||
Mycelium coverage rate | 32.66% 53.75% 62.6% | |||
1:3 | Experimental group B—100% cotton | 84.60% | ||
Mycelium coverage rate | 84.46% 84.48% 84.85% | |||
Experimental group B—100% polyester | 77.04% | |||
Mycelium coverage rate | 73.86% 74.23% 83.02% | |||
1:5 | Experimental group C—100% cotton | 76.25% | ||
Mycelium coverage rate | 76.33% 72.77% 79.66% | |||
Experimental group C—100% polyester | 78.64% | |||
Mycelium coverage rate | 78.09% 75.24% 82.60% | |||
5:1 | Experimental group D—100% cotton | 63.03% | ||
Mycelium coverage rate | 62.78% 67.82% 58.49% | |||
Experimental group D—100% polyester | 57.46% | |||
Mycelium coverage rate | 57.26% 58.51% 56.60% | |||
3:1 | Experimental group E-100% cotton | 71.93% | ||
Mycelium coverage rate | 78.4% 65.02% 72.37% | |||
Experimental group E—100% polyester | 69.60% | |||
Mycelium coverage rate | 69.88% 87.68% 51.23% |
Rating | Description |
---|---|
5 | No significant change |
4 | There are no cracks on the surface, but the impact marks can be seen through the light |
3 | Slight surface cracks (10–20 mm) |
2 | Severe surface cracks (21–30 mm) |
1 | Fracture of material |
Repeat Repeat Sample | Sample 1 Polyester–Cotton Ratio (100:0) | Sample 2 Polyester–Cotton Ratio (95:5) | Sample 3 Polyester–Cotton Ratio (80:20) | Sample 4 Polyester–Cotton Ratio (65:35) | Sample 5 Polyester–Cotton Ratio (0:100) |
---|---|---|---|---|---|
The First Time | |||||
Mycelium Coverage Rate | 56.71% | 62.99% | 63.74% | 81.60% | 82.73 |
The Second Time | |||||
Mycelium Coverage Rate | 66.21% | 79.11% | 80.52% | 82.65% | 85.22% |
The Third Time | |||||
Mycelium Coverage Rate | 72.73% | 80.30% | 85.48% | 87.39% | 91.00% |
Average Value | 65.22% | 74.13% | 76.58% | 83.88% | 86.32% |
Sample Weight | 70 g | 90 g | 110 g | 130 g | Total Score | ||||
---|---|---|---|---|---|---|---|---|---|
Sample 1 100% Polyester | Before | After | Before | After | Before | After | Before | After | 9 |
Score | 4 | 3 | 1 | 1 | |||||
Sample 2 Polyester/Cotton 95:5 | 11 | ||||||||
Score | 5 | 3 | 2 | 1 | |||||
Sample 3 Polyester/Cotton 80:20 | 12 | ||||||||
Score | 4 | 4 | 3 | 1 | |||||
Sample 4 Polyester/Cotton 65:35 | 15 | ||||||||
Score | 5 | 4 | 3 | 3 | |||||
Sample 5 100% Cotton | 17 | ||||||||
Score | 5 | 5 | 4 | 3 |
Item of Test | Degree of Freedom | F-Statistic | p-Value | ηp2 |
---|---|---|---|---|
Strength of compression | 10.517 | 10,395.335 | 4.692797 × 10−19 | 1.000 |
Strength of bending | 10.723 | 139.913 | 2.157117 × 10−9 | 0.948 |
Performance of impact | 11.016 | 39.179 | 0.00 | 0.841 |
Water vapour transmittance | 10.517 | 10,395.335 | 4.692797 × 10−19 | 1.000 |
Soil degradation Weight loss rate | 11.101 | 886.763 | 4.763730 × 10−14 | 0.992 |
Range of MBCs Performance Data in This Study | |
---|---|
Compressive strength (Mpa) | 0.075–0.317 |
Flexural strength (Mpa) | 0.462–0.791 |
Impact performance score (score) | 9–17 |
Water vapour transmittance (g/m2·24 h) | 47–112 |
28 day soil degradation weight loss rate (%) | 27–45 |
Performance Materials | MBCs Previous Studies | PS | PU | PW | PB |
---|---|---|---|---|---|
Compressive strength (Mpa) | 0.25–1.87 | 0.03–0.69 | 0.002–48 | 8–25 | 1.8–3.4 |
Flexural strength (Mpa) | 0.05–4.4 | 0.07–0.70 | 0.21–57 | 35–78 | 1.5–7 |
Impact strength (kJ/m2) | 0.21–2.70 | 0.01–0.15 | 1.0–1.2 | – | – |
Water absorption (%) | 105.07–208.82 | 0.03–9 | 0.01–72 | 5–49 | 30.1–200 |
Rate of degradation | Weeks–months | Decades–centuries | Years–decades |
Type of Element | Inspiration Extraction/Explanation | Geometric Figure Transformation | |
---|---|---|---|
Architectural landscape | Lianhua Mountain viewing platform | ||
Yokohama Zhengjin Bank Dalian Branch, now Bank of China Zhongshan Branch | |||
Dalian Christ Church site, now KFC restaurant | |||
The former site of the East Qing Ship Club, now Dalian Art Museum | |||
Clock in Zhong Shan Square | |||
Urban landscape | The 201 tram | ||
Portia Bay Park Lighthouse | |||
Dalian old wharf lighthouse |
Indicators of Evaluation | Description of Indicators |
---|---|
zb1 saves wood | Maximise the variety and quantity of materials to improve the utilisation rate of materials. |
zb2 reused | The ways, methods, means, and forms of waste polyester and cotton material utilisation are rich and diverse |
zb3 life cycle | The energy consumption and carbon emission of the mycelium culture process, the degradation efficiency of the product after waste, and whether to reduce the use of traditional chemical materials |
zb4 durability | The structure is strong and stable, durable, safe, and reliable |
zb5 aesthetics | Product shape, colour, and texture are beautiful |
zb6 interactive fun | Whether the user can have fun in the exploration process |
zb7 operate | Module combination logic, furnishing’s interspersed structure is simple and easy to understand |
zb8 emotional reflection | Through deep thinking about waste textiles and resources, strengthen environmental awareness |
zb9 industrialisation | Reasonable cost, whether it can achieve standardised, modular design of mass production |
Cultural and Creative Products | zb1 | zb2 | zb3 | zb4 | zb5 | zb6 | zb7 | zb8 | zb9 | Composite Score |
---|---|---|---|---|---|---|---|---|---|---|
Mosaic non-fire aromatherapy box | 4.8 | 4.8 | 3.9 | 3.2 | 4.7 | 4.8 | 2.7 | 4.8 | 3.9 | 4.18 |
Decorative ornaments | 3.3 | 4.3 | 3.9 | 3.9 | 2.8 | 2.9 | 4.7 | 4.8 | 3.2 | 3.76 |
Mosaic decorative painting | 3.5 | 4.2 | 3.9 | 4.8 | 3.2 | 4 | 4.6 | 3.8 | 4.2 | 4.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Gao, Y.; Zong, X.; Wang, J. Study on the Properties and Design Applications of Polyester–Cotton Matrix Mycelium Composite Materials. Biomimetics 2025, 10, 681. https://doi.org/10.3390/biomimetics10100681
Zheng W, Gao Y, Zong X, Wang J. Study on the Properties and Design Applications of Polyester–Cotton Matrix Mycelium Composite Materials. Biomimetics. 2025; 10(10):681. https://doi.org/10.3390/biomimetics10100681
Chicago/Turabian StyleZheng, Wanlin, Yajie Gao, Xiaona Zong, and Jun Wang. 2025. "Study on the Properties and Design Applications of Polyester–Cotton Matrix Mycelium Composite Materials" Biomimetics 10, no. 10: 681. https://doi.org/10.3390/biomimetics10100681
APA StyleZheng, W., Gao, Y., Zong, X., & Wang, J. (2025). Study on the Properties and Design Applications of Polyester–Cotton Matrix Mycelium Composite Materials. Biomimetics, 10(10), 681. https://doi.org/10.3390/biomimetics10100681