Bio-Inspired Multi-Granularity Model for Rice Pests and Diseases Named Entity Recognition in Chinese
Abstract
1. Introduction
- (1)
- A high-quality, large-scale, and finely annotated named entity recognition dataset for rice pests and diseases was constructed through rigorous screening, deduplication, and noise reduction from authoritative data sources. The content was further validated under the guidance of domain experts.
- (2)
- A hierarchical NER model that integrates multi-granularity feature extraction and contextual awareness was proposed. By incorporating parallel multi-scale convolutional kernels, the model significantly enhances nested boundary detection, providing an effective solution for recognizing complex entities in the domain of rice pests and diseases.
2. Dataset Construction
3. Method
3.1. Overall Architecture of the Model
3.2. BERT Encoder
3.3. Multi-Granularity CNN
3.4. BiLSTM
3.5. Conditional Random Fields
4. Results
4.1. Experimental Environment and Parameter Setting
4.2. Comparison Results
4.3. Influence of Multi-Granularity CNNs
4.4. Influence of CNN Hidden Layer Dimension
4.5. Categorical Performances
4.6. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ulukaya, S.; Deari, S. A robust vision transformer-based approach for classification of labeled rices in the wild. Comput. Electron. Agric. 2025, 231, 109950. [Google Scholar] [CrossRef]
- Yang, H.; Lin, D.; Zhang, G.; Zhang, H.; Wang, J.; Zhang, S. Research on Detection of Rice Pests and Diseases Based on Improved yolov5 Algorithm. Appl. Sci. 2023, 13, 10188. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Ran, X.; Shi, J.; Bi, Y.; Wang, C. Detecting rice disease using PBM-YOLOv8. Trans. Chin. Soc. Agric. Eng. 2024, 40, 147–156. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Haijun, H.; Lai, Q.; Li, M.; Guan, L. Naming entity recognition of citrus pests and diseases based on the BERT-BiLSTM-CRF model. Expert. Syst. Appl. 2023, 234, 121103. [Google Scholar] [CrossRef]
- Jia, L.; Wang, T.; Chen, Y.; Zang, Y.; Li, X.; Shi, H.; Gao, L. MobileNet-CA-YOLO: An Improved YOLOv7 Based on the MobileNetV3 and Attention Mechanism for Rice Pests and Diseases Detection. Agriculture 2023, 13, 1285. [Google Scholar] [CrossRef]
- Tussupov, J.; Yessenova, M.; Abdikerimova, G.; Aimbetov, A.; Baktybekov, K.; Murzabekova, G.; Aitimova, U. Analysis of Formal Concepts for Verification of Pests and Diseases of Crops Using Machine Learning Methods. IEEE Access 2024, 12, 19902–19910. [Google Scholar] [CrossRef]
- Li, J.; Sun, A.; Han, J.; Li, C. A Survey on Deep Learning for Named Entity Recognition. IEEE Trans. Knowl. Data Eng. 2022, 34, 50–70. [Google Scholar] [CrossRef]
- Ming, H.; Yang, J.; Gui, F.; Jiang, L.; An, N. Few-shot nested named entity recognition. Knowl. Based Syst. 2024, 293, 111688. [Google Scholar] [CrossRef]
- Zhao, B.; Jin, W.; Del Ser, J.; Yang, G. ChatAgri: Exploring potentials of ChatGPT on cross-linguistic agricultural text classification. Neurocomputing 2023, 557, 126708. [Google Scholar] [CrossRef]
- Wang, K.; Miao, Y.; Wang, X.; Li, Y.; Li, F.; Song, H. Research on the construction of a knowledge graph for tomato leaf pests and diseases based on the named entity recognition model. Front. Plant Sci. 2024, 15, 1482275. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zheng, J. A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests. Comput. Mater. Contin. 2024, 78, 197–225. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, C.; Wu, H.; Wang, W. Named entity recognition of agricultural text based on attention mechanism. Trans. CSAM 2021, 52, 185–192. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H.; Guo, X.; Liu, C.; Su, J.; Tang, Z. Named Entity Recognition of Diseases and Insect Pests Based on Multi Source Information Fusion. Trans. CSAM 2021, 52, 253–263. [Google Scholar] [CrossRef]
- Niu, P.; Hou, C. Named entity recognition of Chinese rice breeding questions based on text data augmentation. Trans. CSAM 2024, 55, 333–343. [Google Scholar] [CrossRef]
- Liang, J.; Li, D.; Lin, Y.; Wu, S.; Huang, Z. Named Entity Recognition of Chinese Crop Diseases and Pests Based on RoBERTa-wwm with Adversarial Training. Agronomy 2023, 13, 941. [Google Scholar] [CrossRef]
- Deng, L.; Chen, Y.; Wu, Y.; Qin, Y.; Huang, R.; Zheng, Q.; Tan, X. Research on end-to-end nested named entity recognition method. Comput. Eng. Appl. 2023, 59, 278–284. [Google Scholar] [CrossRef]
- Tang, Z.; Kou, X.; Xue, H.; Xia, Y. Flat and Nested Protein Name Recognition Based on BioBERT and Biaffine Decoder. In Proceedings of the International Symposium Bioinformatics Research and Applications, Kunming, China, 19–21 July 2024. [Google Scholar] [CrossRef]
- Yan, J.; Zong, C.; Xu, J. Nested entity recognition method in Chinese medical texts. J. Softw. 2024, 35, 2923–2935. [Google Scholar] [CrossRef]
- Ke, X.; Wu, X.; Ou, Z.; Li, B. Chinese Named Entity Recognition method based on multi-feature fusion and biaffine. Complex Intell. Syst. 2024, 10, 6305–6318. [Google Scholar] [CrossRef]
- Gasmi, K.; Ayadi, H.; Torjmen, M. Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing. Diagnostics 2024, 14, 1204. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, R.; Docherty, P.; Lunt, H.; Möller, K. The effect of activation functions on accuracy, convergence speed, and misclassification confidence in CNN text classification: A comprehensive exploration. J. Supercomput. 2024, 80, 292–312. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Fang, F.; Yao, L. Text classification of Chinese news based on multi-scale CNN and LSTM hybrid model. Multimed. Tools Appl. 2023, 82, 20975–20988. [Google Scholar] [CrossRef]
- Alzahrani, A. Bioinspired Image Processing Enabled Facial Emotion Recognition Using Equilibrium Optimizer with a Hybrid Deep Learning Model. IEEE Access 2024, 12, 22219–22229. [Google Scholar] [CrossRef]
- Yao, X.; Hao, X.; Liu, R.; Li, L.; Guo, X. AgCNER, the First Large-Scale Chinese Named Entity Recognition Dataset for Agricultural Diseases and Pests. Sci. Data 2024, 11, 3578. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 3–5 June 2019. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 2017 Conference and Workshop on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Haffar, N.; Zrigui, M. A synergistic bidirectional LSTM and n-gram multi-channel CNN approach based on BERT and FastText for Arabic event identification. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2023, 22, 156. [Google Scholar] [CrossRef]
- Zaheer, S.; Anjum, N.; Hussain, S.; Algarni, A.D.; Iqbal, J.; Bourouis, S.; Ullah, S.S. A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model. Mathematics 2023, 11, 590. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Chen, W. IDCNN-CRF-based domain named entity recognition method. In Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology, Weihai, China, 14–16 October 2020. [Google Scholar] [CrossRef]
- Yu, J.; Ji, B.; Li, S.; Ma, J.; Liu, H.; Xu, H. S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition. Sensors 2022, 22, 2852. [Google Scholar] [CrossRef]
- Li, J.; Fe, H.; Liu, J.; Wu, S.; Zhang, M.; Teng, C.; Ji, D.; Li, F. Unified Named Entity Recognition as Word-Word Relation Classification. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022. [Google Scholar] [CrossRef]
- Shen, Y.; Song, K.; Tan, X.; Li, D.; Lu, W.; Zhuang, Y. DiffusionNER: Boundary Diffusion for Named Entity Recognition. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, Q.; Gan, Y.; Lin, R.; Li, C.; Liu, X.; Luo, D.; JiayeYang, J. DiFiNet: Boundary-Aware Semantic Differentiation and Filtration Network for Nested Named Entity Recognition. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 11–16 August 2024. [Google Scholar] [CrossRef]
Number | Tags (EN) | Abbr. | Quantity |
---|---|---|---|
1 | Biosystematic | BIS | 283 |
2 | Company | COM | 303 |
3 | Crop | CRO | 14,936 |
4 | Cultivar | CUL | 4443 |
5 | Disease | DIS | 9058 |
6 | Drug | DRUG | 6250 |
7 | Fertilizer | FER | 327 |
8 | Organization | ORG | 1216 |
9 | Other | OTH | 456 |
10 | Pathogens | PAOG | 1024 |
11 | Part | PART | 2595 |
12 | Period | PER | 4361 |
13 | Pests | PET | 11,405 |
Hyper-Parameters | Value |
---|---|
loss function | cross entropy |
optimizer | Adam |
learning rate | 0.001 |
CNN convolution kernel | [2, 3, 4] |
CNN hidden layer dimension ) | 64 |
LSTM hidden layer dimension ) | 128 |
sequence length ) | 100 |
dropout | 0.1 |
batch size | 32 |
Method | P | R | F |
---|---|---|---|
BERT-BiLSTM-CRF | 88.89 | 92.19 | 90.51 |
BERT-BiGRU-CRF | 88.97 | 90.14 | 89.55 |
W2NER [31] | 90.01 | 92.12 | 91.04 |
DiffusionNER [32] | 90.12 | 91.62 | 90.84 |
DiFiNet [33] | 90.34 | 91.59 | 90.96 |
BERT-Biaffine [17] | 89.89 | 92.40 | 91.13 |
Ours | 90.86 | 92.64 | 91.74 |
Entities Type | P | R | F |
---|---|---|---|
Biosystematic | 71.43 | 86.21 | 78.13 |
Company | 78.79 | 81.25 | 80.00 |
Crop | 93.88 | 94.49 | 94.18 |
Cultivar | 87.20 | 93.60 | 90.29 |
Disease | 97.36 | 97.70 | 97.53 |
Drug | 89.56 | 89.73 | 89.65 |
Fertilizer | 80.95 | 87.18 | 83.95 |
Organization | 65.96 | 82.30 | 73.23 |
Other | 55.00 | 42.31 | 47.83 |
Pathogens | 85.32 | 92.08 | 88.57 |
Part | 87.18 | 87.93 | 87.55 |
Period | 81.45 | 81.06 | 81.25 |
Pests | 94.27 | 95.94 | 95.10 |
Components | The Part of Nested Entities | Whole Test Set | ||||
---|---|---|---|---|---|---|
P | R | F | P | R | F | |
Origin | 89.12 | 91.57 | 90.33 | 90.86 | 92.64 | 91.74 |
Replace multi-granularity CNN with simple CNN | 87.19 | 88.69 | 87.93 | 89.90 | 91.35 | 90.64 |
Without multi-granularity CNN | 86.20 | 88.24 | 87.21 | 88.89 | 92.19 | 90.51 |
Replace BERT with Word2Vec | 81.29 | 80.49 | 80.89 | 82.17 | 81.21 | 81.69 |
Without BiLSTM | 83.97 | 88.18 | 86.02 | 86.86 | 88.67 | 87.76 |
Replace BiLSTM with simple RNN | 86.43 | 88.26 | 87.34 | 88.18 | 89.18 | 88.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Lu, X.; Liu, E.; Zhong, Y.; Peng, X. Bio-Inspired Multi-Granularity Model for Rice Pests and Diseases Named Entity Recognition in Chinese. Biomimetics 2025, 10, 676. https://doi.org/10.3390/biomimetics10100676
Tang Z, Lu X, Liu E, Zhong Y, Peng X. Bio-Inspired Multi-Granularity Model for Rice Pests and Diseases Named Entity Recognition in Chinese. Biomimetics. 2025; 10(10):676. https://doi.org/10.3390/biomimetics10100676
Chicago/Turabian StyleTang, Zhan, Xiaoyu Lu, Enli Liu, Yan Zhong, and Xiaoli Peng. 2025. "Bio-Inspired Multi-Granularity Model for Rice Pests and Diseases Named Entity Recognition in Chinese" Biomimetics 10, no. 10: 676. https://doi.org/10.3390/biomimetics10100676
APA StyleTang, Z., Lu, X., Liu, E., Zhong, Y., & Peng, X. (2025). Bio-Inspired Multi-Granularity Model for Rice Pests and Diseases Named Entity Recognition in Chinese. Biomimetics, 10(10), 676. https://doi.org/10.3390/biomimetics10100676