Glucocorticoid-Mediated Modulation of Eosinopoiesis in Asthma: A Paradoxical Duality
Abstract
1. Introduction
2. General Aspects of Eosinopoiesis: Cellular Pathways and Transcriptional Control
3. Classical Role of Glucocorticoids on Asthma
4. GC-Induced Eosinopoiesis
5. The Bone Marrow Microenvironment and External Modulators of GC-Induced Eosinopoiesis
6. Bone Marrow Priming and Cellular Mechanisms of GC-Dependent Eosinopoiesis in Experimental Asthma
7. Clinical and Translational Implications of GC-Induced Eosinopoiesis in Asthma
8. Research Gaps in Glucocorticoid–Eosinopoiesis Interactions
- 1—Blocking Bone Marrow Output:
- 2—Interrupting Egress and Mobilization:
9. Future Research Directions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATG5 | Autophagy-related protein 5 |
CysLT | Cysteinyl-Leukotriene |
GC | Glucocorticoid |
GCR | glucocorticoid receptor |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
IL | Interleukin |
IL-5Rα | IL-5 receptor alpha |
iNOS | inducible NO Synthase |
NO | Nitric Oxide |
SEA | Staphylococcal enterotoxins A |
STAT5 | Signal Transducer and Activator of Transcription 5 |
References
- Barnes, P.J. Corticosteroids: The drugs to beat. Eur. J. Pharmacol. 2006, 533, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Adcock, I.M.; Lane, S.J. Corticosteroid-insensitive asthma: Molecular mechanisms. J. Endocrinol. 2003, 178, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.S.; Leung, D.Y.; Bloom, J.W. Update on glucocorticoid action and resistance. J. Allergy Clin. Immunol. 2003, 111, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention, 2023. Available online: https://ginasthma.org (accessed on 28 June 2025).
- Elsas, M.I.; Joseph, D.; Elsas, P.X.; Vargaftig, B.B. Rapid increase in bone-marrow eosinophil production and responses to eosinopoietic interleukins triggered by intranasal allergen challenge. Am. J. Respir. Cell Mol. Biol. 1997, 17, 404–413. [Google Scholar] [CrossRef]
- Elsas, P.X.; Neto, H.A.P.; Cheraim, A.B.; Magalhães, E.S.S.; Accioly, M.T.S.; Carvalho, V.F.E.; Silva, P.M.R.; Vargaftig, B.B.; Cunha, F.Q.; Elsas, M.I. Induction of bone-marrow eosinophilia in mice submitted to surgery is dependent on stress-induced secretion of glucocorticoids. Br. J. Pharmacol. 2004, 143, 541–548. [Google Scholar] [CrossRef]
- Masid-De-Brito, D.; Xavier-Elsas, P.; Luz, R.A.; Queto, T.; da Silva, C.L.C.A.; Lopes, R.S.; Vieira, B.M.; Gaspar-Elsas, M.I. Essential roles of endogenous glucocorticoids and TNF/TNFR1 in promoting bone-marrow eosinopoiesis in ovalbumin-sensitized, airway-challenged mice. Life Sci. 2014, 94, 74–82. [Google Scholar] [CrossRef]
- Squebola-Cola, D.M.; Mello, G.C.; Pissinatti, L.; Schenka, A.A.; Anhê, G.F.; DeSouza, I.A.; Condino-Neto, A.; Antunes, E. Airway exposure to staphylococcal enterotoxin A potentiates allergen-induced bone marrow eosinophilia and trafficking to peripheral blood and airways. Am. J. Physiol. Cell. Mol. Physiol. 2013, 304, L639–L645. [Google Scholar] [CrossRef]
- Vieira, B.M.; de Souza, C.C.; Masid-De-Brito, D.; Ferreira, R.N.; Brum, R.S.; Gaspar-Elsas, M.I.C.; Xavier-Elsas, P. 5-lipoxygenase- and glucocorticoid-dependent eosinophilia in a novel surgical model in mice. Int. Immunopharmacol. 2021, 94, 107440. [Google Scholar] [CrossRef] [PubMed]
- Elsas, M.I.; Maximiano, E.S.; Joseph, D.; Alves, L.; Topilko, A.; Vargaftig, B.B.; Elsas, P.X. Upregulation by glucocorticoids of responses to eosinopoietic cytokines in bone-marrow from normal and allergic mice. Br. J. Pharmacol. 2000, 129, 1543–1552. [Google Scholar] [CrossRef]
- Xavier-Elsas, P.; Vieira, B.M.; Masid-De-Brito, D.; Santos, J.; Barradas, M.G.; de Luca, B.; Gaspar-Elsas, M.I. Novel lineage- and stage-selective effects of retinoic acid on mouse granulopoiesis: Blockade by dexamethasone or inducible NO synthase inactivation. Int. Immunopharmacol. 2017, 45, 79–89. [Google Scholar] [CrossRef]
- Gordon, M.Y.; Kearney, L.; Hibbin, J.A. Effects of human marrow stromal cells on proliferation by human granulocytic (GM-CFC), erythroid (BFU-E) and mixed (Mix-CFC) colony-forming cells. Br. J. Haematol. 1983, 53, 317–325. [Google Scholar]
- Gordon, M.Y.; Gordon-Smith, E.C. Bone marrow fibroblastoid colony-forming cells (F-CFC) in aplastic anaemia: Colony growth and stimulation of granulocyte-macrophage colony-forming cells (GM-CFC). Br. J. Haematol. 1981, 49, 465–477. [Google Scholar] [CrossRef]
- Salter, B.M.; Ju, X.; Sehmi, R. Eosinophil lineage-committed progenitors as a therapeutic target for asthma. Cells 2021, 10, 412. [Google Scholar] [CrossRef]
- Laffey, K.G.; Du, J.; Schrum, A.G.; Ackerman, S.J. Transcriptional regulation of the human IL5RA gene through alternative promoter usage during eosinophil development. Int. J. Mol. Sci. 2021, 22, 10245. [Google Scholar] [CrossRef] [PubMed]
- Gigon, L.; Blanchard, C.; Bochner, B.S. Eosinophils from A to Z. Allergy 2023, 78, 1821–1837. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Kwok, I.; Yang, L.; Wen, W.; Huang, P.; Wu, M.; Li, J.; Huang, Z.; Liu, Z.; et al. Cebp1 and Cebpβ transcriptional axis controls eosinophilopoiesis in zebrafish. Nat. Commun. 2024, 15, 45029. [Google Scholar] [CrossRef] [PubMed]
- Fulkerson, P.C. Transcription Factors in Eosinophil Development and As Therapeutic Targets. Front. Med. 2017, 4, 115. [Google Scholar] [CrossRef]
- Mack, E.A.; Pear, W.S. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr. Opin. Hematol. 2020, 27, 27–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arnold, I.C.; Munitz, A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat. Rev. Immunol. 2024, 24, 858–877. [Google Scholar] [CrossRef] [PubMed]
- Drissen, R.; Buza-Vidas, N.; Woll, P.; Thongjuea, S.; Gambardella, A.; Giustacchini, A.; Mancini, E.; Zriwil, A.; Lutteropp, M.; Grover, A.; et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 2016, 17, 666–676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paul, F.; Arkin, Y.; Giladi, A.; Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Winter, D.; Lara-Astiaso, D.; Gury, M.; Weiner, A.; et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell 2016, 164, 325. [Google Scholar] [CrossRef] [PubMed]
- Felton, J.M.; Vallabh, S.; Parameswaran, S.; E Edsall, L.; Ernst, K.; Wronowski, B.; Malik, A.; Kotliar, M.; Weirauch, M.T.; Barski, A.; et al. Epigenetic Analysis of the Chromatin Landscape Identifies a Repertoire of Murine Eosinophil-Specific PU.1-Bound Enhancers. J. Immunol. 2021, 207, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Koeffler, P.; Gombart, A.; Kwok, S.; Anderson, K.; Yamaguchi, Y.; Torbett, B. Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBPε and PU.1. Blood 2003, 101, 3265–3273. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.A.; Christensen, C.J.; Dunn, D.M.; Spangrude, G.J.; Georgelas, A.; Kelley, L.; Esplin, M.S.; Weiss, R.B.; Gleich, G. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 2007, 109, 12. [Google Scholar] [CrossRef] [PubMed]
- Bouffi, C.; Kartashov, A.; Schollaert, K.; Chen, X.; Bacon, W.; Weirauch, M.; Barski, A.; Fulkerson, P. Transcription Factor Repertoire of Homeostatic Eosinophilopoiesis. J. Immunol. 2015, 195, 2683–2695. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Ackerman, S.; Minegishi, N.; Takiguchi, M.; Yamamoto, M.; Suda, T. Mechanisms of transcription in eosinophils: GATA-1, but not GATA-2, transactivates the promoter of the eosinophil granule major basic protein gene. Blood 1998, 91, 9. [Google Scholar] [CrossRef]
- Felton, J.; Bouffi, C.; Schwartz, J.; Schollaert, K.; Malik, A.; Vallabh, S.; Wronowski, B.; Magier, A.; Merlin, L.; Barski, A.; et al. Aiolos regulates eosinophil migration into tissues. Mucosal Immunol. 2021, 14, 1271–1281. [Google Scholar] [CrossRef]
- Buitenhuis, M.; Van Deutekom, H.; Verhagen, L.; Castor, A.; Jacobsen, S.; Lammers, J.; Koenderman, L.; Coffer, P. Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. Blood 2005, 105, 11. [Google Scholar] [CrossRef]
- Bettigole, S.; Lis, R.; Adoro, S.; Lee, A.; Spencer, L.; Weller, P.; Glimcher, L. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 2015, 16, 829–837. [Google Scholar] [CrossRef]
- Trindade, C.J.; Sun, X.; Maric, D.; Sharma, S.; Komarow, H.D.; Hourigan, C.S.; Klion, A.D.; Maric, I. Flow cytometric immunophenotypic differentiation patterns of bone marrow eosinophilopoiesis. Cytom. Part B Clin. Cytom. 2024, 106, 370–382. [Google Scholar] [CrossRef]
- Grisaru-Tal, S.; Itan, M.; Klion, A.D.; Munitz, A. A new dawn for eosinophils in the tumour microenvironment. Nat. Rev. Cancer 2020, 20, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Jorssen, J.; Van Hulst, G.; Mollers, K.; Pujol, J.; Petrellis, G.; Baptista, A.P.; Schetters, S.; Baron, F.; Caers, J.; Lambrecht, B.N.; et al. Single-cell proteomics and transcriptomics capture eosinophil development and identify the role of IL-5 in their lineage transit amplification. Immunity 2024, 57, 1549–1566.e8. [Google Scholar] [CrossRef] [PubMed]
- Muraki, M.; Kita, H.; Gleich, G.J. Dexamethasone and lidocaine suppress eosinophilopoiesis from umbilical cord blood cells. Clin. Mol. Allergy 2020, 18, 1–9. [Google Scholar] [CrossRef]
- Hassani, M.; Leijte, G.P.; Bruse, N.; Kox, M.; Pickkers, P.; Vrisekoop, N.; Koenderman, L. Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. J. Leukoc. Biol. 2020, 108, 1665–1671. [Google Scholar] [CrossRef]
- Hu, Y.; Chakarov, S. Eosinophils in obesity and obesity-associated disorders. Discov. Immunol. 2023, 2, kyad022. [Google Scholar] [CrossRef] [PubMed]
- McColl, A.; Michlewska, S.; Dransfield, I.; Rossi, A.G. Effects of glucocorticoids on apoptosis and clearance of apoptotic cells. Sci. World J. 2007, 7, 1165–1181. [Google Scholar] [CrossRef] [PubMed]
- Ilmarinen, P.; Moilanen, E.; Kankaanranta, H. Mitochondria in the center of human eosinophil apoptosis and survival. Int. J. Mol. Sci. 2014, 15, 3952–3969. [Google Scholar] [CrossRef]
- Ohta, K.; Yamashita, N. Apoptosis of eosinophils and lymphocytes in allergic inflammation. J. Allergy Clin. Immunol. 1999, 104, 14–21. [Google Scholar] [CrossRef]
- Kankaanranta, H.; Lindsay, M.A.; Giembycz, M.A.; Zhang, X.; Moilanen, E.; Barnes, P.J. Delayed eosinophil apoptosis in asthma. J. Allergy Clin. Immunol. 2000, 106, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.E.; Liu, L.Y.; Esnault, S.; Stout, B.A.; Fonkem, E.; Kung, V.; Sedgwick, J.B.; Kelly, E.A.B.; Bates, D.M.; Malter, J.S.; et al. Expression of interleukin-5- and granulocyte macrophage-colony-stimulating factor-responsive genes in blood and airway eosinophils. Am. J. Respir. Cell Mol. Biol. 2004, 30, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; Motojima, S.; Hirata, A.; Fukuda, T.; Kihara, N.; Kosaku, A.; Ohtake, H.; Makino, S. Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. J. Allergy Clin. Immunol. 1996, 98, S207–S215. [Google Scholar] [CrossRef]
- Schleimer, R.P.; Bochner, B.S. The effects of glucocorticoids on human eosinophils. J. Allergy Clin. Immunol. 1994, 94, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, J.H.; Ackerman, S.; Weiler, D.; Eisenbrey, A.B.; Gleich, G.J. Effects of glucocorticoids on eosinophil colony growth. J. Allergy Clin. Immunol. 1986, 78, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids—New mechanisms for old drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Akuthota, P.; Roufosse, F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur. Respir. Rev. 2022, 31, 210150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macchia, I.; La Sorsa, V.; Urbani, F.; Moretti, S.; Antonucci, C.; Afferni, C.; Schiavoni, G. Eosinophils as potential biomarkers in respiratory viral infections. Front. Immunol. 2023, 14, 1170035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elsas, M.I.; Vargaftig, B.; Elsas, P.X. Do glucocorticoids enhance eosinopoiesis? Trends Pharmacol. Sci. 2000, 21, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Lintomen, L.; Elsas, M.I.; Maximiano, E.S.; Neto, H.A.d.P.; Joseph, D.; Vargaftig, B.B.; Elsas, P.X. Allergenic sensitization prevents upregulation of haemopoiesis by cyclo-oxygenase inhibitors in mice. Br. J. Pharmacol. 2002, 135, 1315–1323. [Google Scholar] [CrossRef]
- Masid-De-Brito, D.; Vieira, B.M.; de Souza, C.C.; Silva, F.; Gaspar-Elsas, M.I.; Xavier-Elsas, P. Allergen challenge-induced changes in bone-marrow responses to leukotriene D4, nonsteroidal anti-inflammatory drugs and cytokines. Immunopharmacol. Immunotoxicol. 2020, 42, 199–210. [Google Scholar] [CrossRef]
- Xavier-Elsas, P.; de Luca, B.; Queto, T.; Vieira, B.M.; Masid-De-Brito, D.; Dahab, E.C.; Filho, J.C.A.; Cunha, F.Q.; Gaspar-Elsas, M.I. Blockage of eosinopoiesis by IL-17A is prevented by cytokine and lipid mediators of allergic inflammation. Mediat. Inflamm. 2015, 2015, 968932. [Google Scholar] [CrossRef]
- Jones, C.P.; Neto, H.A.P.; Assreuy, J.; Vargaftig, B.B.; Elsas, M.I.; Elsas, P.X. Prostaglandin E2 and dexamethasone regulate eosinophil differentiation and survival through a nitric oxide- and CD95-dependent pathway. Nitric Oxide 2004, 11, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Xavier-Elsas, P.; da Silva, C.L.C.A.; Vieira, B.M.; Masid-De-Brito, D.; Queto, T.; de Luca, B.; Vieira, T.S.d.S.; Gaspar-Elsas, M.I. The in vivo granulopoietic response to dexamethasone injection is abolished in perforin-deficient mutant mice and corrected by lymphocyte transfer from nonsensitized wild-type donors. Mediat. Inflamm. 2015, 2015, 495430. [Google Scholar] [CrossRef]
- Debierre-Grockiego, F.; Fuentes, V.; Prin, L.; Gouilleux, F.; Gouilleux-Gruart, V. Differential effect of dexamethasone on cell death and STAT5 activation during in vitro eosinopoiesis. Br. J. Haematol. 2003, 123, 933–941. [Google Scholar] [CrossRef]
- Stöcklin, E.; Wissler, M.; Gouilleux, F.; Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 1996, 383, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Fernando, J.; Faber, T.W.; A Pullen, N.; Falanga, Y.T.; Kolawole, E.M.; A Oskeritzian, C.; O Barnstein, B.; Bandara, G.; Li, G.; Schwartz, L.B.; et al. Genotype-dependent effects of TGF-β1 on mast cell function: Targeting the Stat5 pathway. J. Immunol. 2013, 191, 4505–4513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berger, A.; Sexl, V.; Valent, P.; Moriggl, R. Inhibition of STAT5: A therapeutic option in BCR-ABL1-driven leukemia. Oncotarget 2014, 5, 9564–9576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brachet-Botineau, M.; Polomski, M.; Neubauer, H.A.; Juen, L.; Hédou, D.; Viaud-Massuard, M.C.; Prié, G.; Gouilleux, F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers 2020, 12, 240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montazersaheb, S.; Ehsani, A.; Fathi, E.; Farahzadi, R.; Vietor, I. An Overview of Autophagy in Hematopoietic Stem Cell Transplantation. Front. Bioeng. Biotechnol. 2022, 10, 849768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Germic, N.; Hosseini, A.; Yousefi, S.; Karaulov, A.; Simon, H.U. Regulation of eosinophil functions by autophagy. Semin. Immunopathol. 2021, 43, 347–362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Germic, N.; Hosseini, A.; Stojkov, D.; Oberson, K.; Claus, M.; Benarafa, C.; Calzavarini, S.; Angelillo-Scherrer, A.; Arnold, I.C.; Müller, A.; et al. ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions. Blood 2021, 137, 2958–2969. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.M.; Paiva, M.B.; Gaspar-Elsas, M.I.; Xavier-Elsas, P. Coordinated regulation of eosinophil production and migration by glucocorticoids, prostaglandins, and cysteinyl-leukotrienes. Int. Immunopharmacol. 2025, 148, 114067. [Google Scholar] [CrossRef]
- Pazdrak, K.; Moon, Y.; Straub, C.; Stafford, S.; Kurosky, A. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3. Apoptosis 2016, 21, 421–431. [Google Scholar] [CrossRef]
- Pazdrak, K.; Straub, C.; Maroto, R.; Stafford, S.; White, W.; Calhoun, W.; Kurosky, A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. J. Immunol. 2016, 197, 3782–3791. [Google Scholar] [CrossRef]
- Khoury, P.; Stokes, K.; Gadkari, M.; Makiya, M.A.; Legrand, F.; Hu, Z.; Klion, A.; Franco, L.M. Glucocorticoid-induced eosinopenia in humans can be linked to early transcriptional events. Allergy 2018, 73, 2076–2079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shao, W.; Wang, Y.; Fang, Q.; Shi, W.; Qi, H. Epigenetic recording of stimulation history reveals BLIMP1-BACH2 balance in determining memory B cell fate upon recall challenge. Nat. Immunol. 2024, 25, 1432–1444. [Google Scholar] [CrossRef]
- Valencia, H.A.; Loffredo, L.F.; Misharin, A.V.; Berdnikovs, S. Phenotypic plasticity and targeting of Siglec-F(high) CD11c(low) eosinophils to the airway in a murine model of asthma. Allergy 2016, 71, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Abdala-Valencia, H.; Coden, M.E.; Chiarella, S.E.; Jacobsen, E.A.; Bochner, B.S.; Lee, J.J.; Berdnikovs, S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J. Leukoc. Biol. 2018, 104, 95–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, C.; Yi, W.; Li, F.; Du, X.; Wang, H.; Wu, P.; Peng, C.; Luo, M.; Hua, W.; Wong, C.C.; et al. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis. Cell Res. 2018, 28, 323–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilson, G.E.; Knight, J.; Liu, Q.; Shelar, A.; Stewart, E.; Wang, X.; Yan, X.; Sanders, J.; Visness, C.; Gill, M.; et al. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. J. Allergy Clin. Immunol. 2024, 154, 297–307.e13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russell, R.; Ray, M.; Yaqub, H.; Murphy, A. Tapering courses of oral corticosteroids after hospital admission due to asthma exacerbation. Eur. Respir. J. 2023, 62 (Suppl. S67), PA3019. [Google Scholar] [CrossRef]
- Ray, M.; Yaqub, H.; Murphy, A.; Russell, R. P170 Tapering courses of oral corticosteroids after hospital admission due to asthma exacerbation. Thorax 2023, 78 (Suppl. S5), A1–A311. [Google Scholar] [CrossRef]
- Lederle, F.; Pluhar, R.; Joseph, A.; Niewoehner, D. Tapering of corticosteroid therapy following exacerbation of asthma. A randomized, double-blind, placebo-controlled trial. Arch. Intern. Med. 1987, 147, 2201–2203. [Google Scholar] [CrossRef]
- Suehs, C.; Menzies-Gow, A.; Price, D.; Bleecker, E.; Canonica, G.; Gurnell, M.; Bourdin, A. Expert Consensus on the Tapering of Oral Corticosteroids for the Treatment of Asthma: A Delphi Study. Am. J. Respir. Crit. Care Med. 2021, 203, 871–881. [Google Scholar] [CrossRef]
- Sivapalan, P.; Lapperre, T.; Janner, J.; Laub, R.; Moberg, M.; Bech, C.; Eklöf, J.; Holm, F.; Armbruster, K.; Sivapalan, P.; et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): A multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir. Med. 2019, 7, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.G.; Manning, P.J.; O’BYrne, P.M.; Girgis-Gabardo, A.; Dolovich, J.; Denburg, J.A.; Hargreave, F.E. Allergen-induced asthmatic responses. Relationship between increases in airway responsiveness and increases in circulating eosinophils, basophils, and their progenitors. Am. Rev. Respir. Dis. 1991, 143, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.; Wang, C.; Lin, H.; Hwang, K.; Liu, S.; Chung, K.F. Interleukin-5 in growth and differentiation of blood eosinophil progenitors in asthma: Effect of glucocorticoids. Br. J. Pharmacol. 2001, 134, 1539–1547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rådinger, M.; Lötvall, J. Eosinophil progenitors in allergy and asthma—Do they matter? Pharmacol. Ther. 2009, 121, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.T.; Magier, A.Z.; Marshall, S.A.; Fulkerson, P.C. Eosinophil Progenitor Cell Blood Levels Inversely Correlate with Disease Control in Pediatric Patients with Asthma. J. Allergy Clin. Immunol. 2019, 143, AB5. [Google Scholar] [CrossRef]
- Schwartz, J.T.; Morris, D.W.; Collins, M.H.; Rothenberg, M.E.; Fulkerson, P.C. Eosinophil progenitor levels correlate with tissue pathology in pediatric eosinophilic esophagitis. J. Allergy Clin. Immunol. 2019, 143, 1221–1224.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, C.; Xu, R.; Li, B.; Liu, J.; Liang, W.; Zhang, S.; Fang, L.; Zhong, S.; de Silva, S.D.S.H.; Sivapalan, D.; et al. Eosinophil Progenitors in Patients With Non-Asthmatic Eosinophilic Bronchitis, Eosinophilic Asthma, and Normal Controls. Front. Immunol. 2022, 13, 737968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, J.; Dong, C.; Wei, S.; Qiu, M.; Wu, P.; Ou, C.; Zhang, B.; Zhang, X.; Yan, J.; Zhang, Q.; et al. Serum Cytokine Profiling Identifies Axl as a New Biomarker Candidate for Active Eosinophilic Granulomatosis with Polyangiitis. Front. Mol. Biosci. 2021, 8, 653461. [Google Scholar] [CrossRef]
- Guida, G.; Bagnasco, D.; Carriero, V.; Bertolini, F.; Ricciardolo, F.; Nicola, S.; Brussino, L.; Nappi, E.; Paoletti, G.; Canonica, G.; et al. Critical evaluation of asthma biomarkers in clinical practice. Front. Med. 2022, 9, 969243. [Google Scholar] [CrossRef]
- Berthon, B.; Gibson, P.; Wood, L.; MacDonald-Wicks, L.; Baines, K. A sputum gene expression signature predicts oral corticosteroid response in asthma. Eur. Respir. J. 2017, 49, 1700180. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.M.; Almeida, B.F.; Machado, M.P. Eosinophil and B-cell dynamics in the milky spots from Schistosoma mansoni-infected mice: Comparison with spleen and bone marrow, and extramedullary eosinopoiesis. Int. Immunol. 2025, 37, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Narita, T.; Murakami, Y.; Isii, T.; Muroi, M.; Yamashita, N. Glucocorticoid-induced TNF receptor family-related protein functions as a co-stimulatory molecule for murine eosinophils. J. Leukoc. Biol. 2023, 115, 771–779. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, V.; Bobolea, I.; Rial, M.J.; Espigol-Frigolé, G.; Laqué, R.S.; Hernández-Rivas, J.M.; Mora, E.; Crespo-Lessmann, A.; Alonso, J.L.I.; Sosa, M.S.D.; et al. Expert consensus on the use of systemic glucocorticoids for managing eosinophil-related diseases. Front. Immunol. 2024, 14, 1310211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Key Biomarkers | Blood eosinophil count | Widely used in clinical practice for asthma phenotyping and monitoring treatment response. |
Bone marrow eosinophil progenitors (CD34+/IL-5Rα+) | Progenitor quantification can indicate bone marrow eosinopoietic activity. | |
Surface activation markers (Siglec-8, CCR3) | Markers linked to chemotaxis and tissue recruitment. | |
Glucocorticoid-induced TNF receptor expression | Possible link to eosinophil functional modulation under GC exposure. | |
Transcription factor expression profiles (GATA-1, C/EBPε, PU.1) | Reflect lineage commitment and differentiation stage. | |
Risk Stratification Strategies | Baseline eosinophil levels pre-GC treatment | May help identify patients more likely to respond or relapse after GC therapy. |
Differential GC response based on maturation stage or activation state | Highlights importance of maturation stage in predicting GC efficacy. | |
Therapeutic Targets | IL-5/IL-5R signaling axis | Target for biologics such as mepolizumab; reduces eosinophil survival. |
STAT5 pathway in eosinopoiesis | Inhibition reduces GC-enhanced eosinopoiesis; potential strategy to limit side effects. | |
GC receptor modulation | Modulation may affect both anti-inflammatory effects and eosinopoiesis. | |
Autophagy-related pathways in eosinophil survival | Potentially linked to GC resistance in eosinophils. | |
Monitoring Approaches | Peripheral blood eosinophil counts during/after GC therapy | Simple and cost-effective monitoring tool. |
Flow cytometry of eosinophil progenitors | More specific assessment of bone marrow output to the periphery. | |
Gene expression assays for GC-responsive genes | Provides insight into molecular response totherapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, B.M. Glucocorticoid-Mediated Modulation of Eosinopoiesis in Asthma: A Paradoxical Duality. Allergies 2025, 5, 35. https://doi.org/10.3390/allergies5040035
Vieira BM. Glucocorticoid-Mediated Modulation of Eosinopoiesis in Asthma: A Paradoxical Duality. Allergies. 2025; 5(4):35. https://doi.org/10.3390/allergies5040035
Chicago/Turabian StyleVieira, Bruno Marques. 2025. "Glucocorticoid-Mediated Modulation of Eosinopoiesis in Asthma: A Paradoxical Duality" Allergies 5, no. 4: 35. https://doi.org/10.3390/allergies5040035
APA StyleVieira, B. M. (2025). Glucocorticoid-Mediated Modulation of Eosinopoiesis in Asthma: A Paradoxical Duality. Allergies, 5(4), 35. https://doi.org/10.3390/allergies5040035