Occupational Hearing Loss Associated with the Combined Exposure of Solvents and Noise: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Retrieval
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Retrieval
3.2. Quality Assessment and Meta-Regression
3.3. Information about the Included Studies
3.4. Prevalence of Hearing Loss in Different Exposure Groups
3.5. Comparison of the Risk of Hearing Loss between the Combined Exposure and Noise Exposure Groups
3.6. Comparison of the Risk of Hearing Loss between the Combined Exposure and Solvents Exposure Groups
3.7. The Predominant Frequencies of Hearing Threshold Shift among the Different Exposure Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Report on Hearing. 3 March 2021. Available online: https://www.who.int/publications/i/item/world-report-on-hearing (accessed on 17 May 2023).
- Konings, A.; Van Laer, L.; Van Camp, G. Genetic studies on noise-induced hearing loss: A review. Ear Hear. 2009, 30, 151–159. [Google Scholar] [CrossRef]
- Themann, C.L.; Suter, A.H.; Stephenson, M.R. National research agenda for the prevention of occupational hearing loss—Part 1. Semin. Hear. 2013, 34, 145–207. [Google Scholar] [CrossRef]
- Lie, A.; Skogstad, M.; Johnsen, T.S.; Engdahl, B.; Tambs, K. The prevalence of notched audiograms in a cross-sectional study of 12,055 railway workers. Ear Hear. 2015, 36, e86–e92. [Google Scholar] [CrossRef] [PubMed]
- Department of Planning, Development and Information Technology. Statistical Bulletin on Health Development in China in 2018. Available online: http://www.nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0.shtml (accessed on 5 June 2019).
- Choi, Y.H.; Kim, K. Noise-induced hearing loss in Korean workers: Co-exposure to organic solvents and heavy metals in nationwide industries. PLoS ONE 2014, 9, e97538. [Google Scholar] [CrossRef] [PubMed]
- Sułkowski, W.J.; Kowalska, S.; Matyja, W.; Guzek, W.; Wesołowski, W.; Szymczak, W.; Kostrzewski, P. Effects of occupational exposure to a mixture of solvents on the inner ear: A field study. Int. J. Occup. Med. Environ. Health 2002, 15, 247–256. [Google Scholar]
- Rosenstock, L.; Cullen, M.R.; Brodkin, C.R.; Redlich, C.A. (Eds.) Textbook of Clinical Occupational and Environmental Medicine, 2nd ed.; Elsevier Saunders: Philadelphia, PA, USA, 2004. [Google Scholar]
- Rebert, C.S.; Sorenson, S.S. Concentration-related effects of hexane on evoked responses from brain and peripheral nerve of the rat. Neurobehav. Toxicol. Teratol. 1983, 5, 69–76. [Google Scholar]
- Lataye, R.; Campo, P. Combined effects of a simultaneous exposure to noise and toluene on hearing function. Neurotoxicol. Teratol. 1997, 19, 373–382. [Google Scholar] [CrossRef]
- Sliwińska-Kowalska, M.; Zamyslowska-Szmytke, E.; Szymczak, W.; Kotylo, P.; Fiszer, M.; Wesolowski, W.; Pawlaczyk-Luszczynska, M. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J. Occup. Environ. Med. 2003, 45, 15–24. [Google Scholar] [CrossRef]
- Szulc-Kuberska, J.; Tronczynska, J.; Latkowski, N. Otoneurological investigations of chronic trichloroethylene poisoning. Minerva Otorinolaringol. 1976, 26, 108–112. [Google Scholar]
- Morata, T.C. Study of the effects of simultaneous exposure to noise and carbon disulfide on workers’ hearing. Scand. Audiol. 1989, 18, 53–58. [Google Scholar] [CrossRef]
- Morata, T.C.; Fiorini, A.C.; Fischer, F.M.; Colacioppo, S.; Wallingford, K.M.; Krieg, E.F.; Dunn, D.E.; Gozzoli, L.; Padrão, M.A.; Cesar, C.L. Toluene-induced hearing loss among rotogravure printing workers. Scand. J. Work Environ. Health 1997, 23, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Morata, T.C.; Johnson, A.C.; Nylen, P.; Svensson, E.B.; Cheng, J.; Krieg, E.F.; Lindblad, A.C.; Ernstgård, L.; Franks, J. Audiometric findings in workers exposed to low levels of styrene and noise. J. Occup. Environ. Med. 2002, 44, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Barregård, L.; Axelsson, A. Is there an ototraumatic interaction between noise and solvents? Scand. Audiol. 1984, 13, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Vyskocil, A.; Truchon, G.; Leroux, T.; Lemay, F.; Gendron, M.; Gagnon, F.; Majidi, N.E.; Boudjerida, A.; Lim, S.; Emond, C.; et al. A weight of evidence approach for the assessment of the ototoxic potential of industrial chemicals. Toxicol. Ind. Health 2012, 28, 796. [Google Scholar] [CrossRef]
- Morata, T.C.; Dunn, D.E.; Kretschmer, L.W.; Lemasters, G.K.; Keith, R.W. Effects of occupational exposure to organic solvents and noise on hearing. Scand. J. Work Environ. Health 1993, 19, 245–254. [Google Scholar] [CrossRef]
- Yuan, F.; Zhong, H.Y.; Deng, H.X. Risk assessment of occupational hazards of wooden furniture manufacturing industry in Chongqing, 2016. J. Occup. Health Damage 2017, 5, 279–283. [Google Scholar]
- Zhou, H. Investigation occupational hazard factors in a label printing enterprise of Shanghai. Occup. Health 2017, 11, 1462–1465. [Google Scholar]
- Tu, Y. National Furniture Manufacturing Enterprise Statistics Table. 23 September 2020. Available online: https://www.0797cx.cn/page37?article_id=77560&pagenum=all (accessed on 17 May 2023).
- Industrial Research Institute of China. Annual Research and Consultation Report of Panorama Survey and Investment Strategy on Printing Enterprise of China. January 2020. Available online: https://www.chinairn.com/report/20200102/102924842.html (accessed on 17 May 2023).
- Morioka, I.; Miyai, N.; Yamamoto, H.; Miyashita, K. Evaluation of combined effect of organic solvents and noise by the upper limit of hearing. Ind. Health 2000, 38, 252–257. [Google Scholar] [CrossRef]
- Vyskocil, A.; Leroux, T.; Truchon, G.; Lemay, F.; Gagnon, F.; Gendron, M.; Viau, C. Ototoxicity of trichloroethylene in concentrations relevant for the working environment. Hum. Exp. Toxicol. 2008, 27, 195–200. [Google Scholar] [CrossRef]
- Bergström, B.; Nyström, B. Development of hearing loss during long-term exposure to occupational noise. A 20-year follow-up study. Scand. Audiol. 1986, 15, 227–234. [Google Scholar] [CrossRef]
- Chen, G.D.; Henderson, D. Cochlear injuries induced by the combined exposure to noise and styrene. Hear. Res. 2009, 254, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, P.; Hein, H.O.; Suadicani, P.; Parving, A.; Gyntelberg, F. Mixed solvent exposure and hearing impairment: An epidemiological study of 3284 men. The Copenhagen male study. Occup. Med. 1993, 43, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, L.; Prasher, D. Effects of industrial solvents on hearing and balance: A review. Noise Health 2006, 8, 114–133. [Google Scholar] [PubMed]
- Nakhooda, F.; Sartorius, B.; Govender, S.M. The effects of combined exposure of solvents and noise on auditory function—A systematic review and meta-analysis. S. Afr. J. Commun. Disord. 2019, 66, e1–e11. [Google Scholar] [CrossRef]
- Hormozi, M.; Ansari-Moghaddam, A.; Mirzaei, R.; Dehghan Haghighi, J.; Eftekharian, F. The risk of hearing loss associated with occupational exposure to organic solvents mixture with and without concurrent noise exposure: A systematic review and meta-analysis. Int. J. Occup. Med. Environ. Health 2017, 30, 521–535. [Google Scholar] [CrossRef]
- Golmohammadi, R.; Darvishi, E. The Combined Effects of Occupational Exposure to Noise and Other Risk Factors—A Systematic Review. Noise Health 2020, 21, 125–141. [Google Scholar]
- O’Connor, D.; Green, S.; Higgins, J.P.T. Chapter 5: Defining the review question and developing criteria for including studies. In Cochrane Handbook for Systematic Reviews of Interventions; Version 5.0.1 [updated September 2008]; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2008; Available online: www.cochrane-handbook.org (accessed on 17 May 2023).
- Guida, H.L.; Morini, R.G.; Cardoso, A.C. Audiological evaluation in workers exposed to noise and pesticide. Braz. J. Otorhinolaryngol. 2010, 76, 423–427. [Google Scholar] [CrossRef]
- De Barba, M.C.; Jurkiewicz, A.L.; Zeigelboim, B.S.; De Oliveira, L.A.; Belle, A.P. Audiometric findings in petrochemical workers exposed to noise and chemical agents. Noise Health 2005, 7, 7–11. [Google Scholar]
- Lobato, D.C.; Lacerda, A.B.; Gonçalves, C.G.; Coifman, H. Auditory effects of exposure to noise and solvents: A comparative study. Int. Arch. Otorhinolaryngol. 2014, 18, 136–141. [Google Scholar]
- Sliwinska-Kowalska, M.; Zamyslowska-Szmytke, E.; Szymczak, W.; Fiszer, M.; Dudarewicz, A.; Wesolowski, W.; Pawlaczyk-Luszczynska, M.; Stolarek, R. Hearing loss among workers exposed to moderate concentrations of solvents. Scand. J. Work Environ. Health 2001, 27, 335–342. [Google Scholar] [CrossRef]
- Chang, S.J.; Shih, T.S.; Chou, T.C.; Chen, C.J.; Chang, H.Y.; Sung, F.C. Hearing loss in workers exposed to carbon disulfide and noise. Environ. Health Perspect. 2003, 111, 1620–1624. [Google Scholar] [CrossRef] [PubMed]
- Schäper, M.; Seeber, A.; van Thriel, C. The effects of toluene plus noise on hearing thresholds: An evaluation based on repeated measurements in the German printing industry. Int. J. Occup. Med. Environ. Health 2008, 21, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.; Slagley, J.; Schaal, N.C. Effect of noise and ototoxicants on developing standard threshold shifts at a U.S. Air Force depot level maintenance facility. J. Occup. Environ. Hyg. 2021, 18, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.; Hunting, K.L. Evaluation of the effects of exposure to organic solvents and hazardous noise among US Air Force Reserve personnel. Noise Health 2013, 15, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Shie, R.H.; Chen, P.C. Hearing loss in workers exposed to epoxy adhesives and noise: A cross-sectional study. BMJ Open 2016, 6, e010533. [Google Scholar] [CrossRef]
- Botelho, C.T.; Paz, A.P.; Gonçalves, A.M.; Frota, S. Comparative study of audiometrics tests on metallurgical workers exposed to noise only as well as noise associated to the handling of chemical products. Braz. J. Otorhinolaryngol. 2009, 75, 51–57. [Google Scholar] [CrossRef]
- Metwally, F.M.; Aziz, H.M.; Mahdy-Abdallah, H.; El Gelil, K.S.; El-Tahlawy, E.M. Effect of combined occupational exposure to noise and organic solvents on hearing. Toxicol. Ind. Health 2012, 28, 901–907. [Google Scholar] [CrossRef]
- Sliwinska-Kowalska, M.; Zamyslowska-Szmytke, E.; Szymczak, W.; Kotylo, P.; Fiszer, M.; Wesolowski, W.; Pawlaczyk-Luszczynska, M.; Bak, M.; Gajda-Szadkowska, A. Effects of coexposure to noise and mixture of organic solvents on hearing in dockyard workers. J. Occup. Environ. Med. 2004, 46, 30–38. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.; Ha, E.; Jung, T.; Paik, N.; Yang, S. Combined effects of noise and mixed solvents exposure on the hearing function among workers in the aviation industry. Ind. Health 2005, 43, 567–573. [Google Scholar] [CrossRef]
- Morioka, I.; Kaewboonchoo, O.; Nabkerson, C.; Miyai, N. Combined effects of noise and styrene on hearing of workers at a company for the bath and toilet production in Thailand. In Proceedings of the 21st International Congress on Sound and Vibration 2014 ICSV, Beijing, China, 13–17 July 2014. [Google Scholar]
- Chang, S.J.; Chen, C.J.; Lien, C.H.; Sung, F.C. Hearing loss in workers exposed to toluene and noise. Environ. Health Perspect. 2006, 114, 1283–1286. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Weng, S.; Su, W.; Wang, X.; Guo, Y.; Yu, D.; Du, L.; Zhou, T.; Chen, W.; et al. Occupational hearing loss among chinese municipal solid waste landfill workers: A cross-sectional study. PLoS ONE 2015, 10, e0128719. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Labbafinejad, Y.; Attarchi, M. Combined effects of ototoxic solvents and noise on hearing in automobile plant workers in Iran. Arh. Hig. Rada Toksikol. 2010, 61, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Rizk, S.A.; Sharaf, N.E. Health hazards among a sample of workers exposed to a combination of noise and organic solvents in a fermentation factory in Egypt. Nature Sci. 2010, 8, 95–99. [Google Scholar]
- Zhang, M.; Wang, Y.; Wang, Q.; Yang, D.; Zhang, J.; Wang, F.; Gu, Q. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers. J. Occup. Environ. Med. 2013, 55, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Parent-Thirion, A.; Fernández Macías, E.; Hurley, J.; Vermeylen, G. Fourth European Working Conditions Survey; European Foundation for the Improvement of Living and Working Conditions: Dublin, Ireland, 2007. [Google Scholar]
- Shi, Z.; Zhou, J.; Huang, Y.; Hu, Y.; Zhou, L.; Shao, Y.; Zhang, M. Occupational hearing loss associated with non-gaussian noise: A systematic review and meta-analysis. Ear Hear. 2021, 42, 1472–1484. [Google Scholar] [CrossRef] [PubMed]
- Pryor, G.T.; Dickinson, J.; Howd, R.A.; Rebert, C.S. Transient cognitive deficits and high-frequency hearing loss in weanling rats exposed to toluene. Neurobehav. Toxicol. Teratol. 1983, 5, 53–57. [Google Scholar]
- Pryor, G.T.; Rebert, C.S.; Howd, R.A. Hearing loss in rats caused by inhalation of mixed xylenes and styrene. J. Appl. Toxicol. 1987, 7, 55–61. [Google Scholar] [CrossRef]
- Cappaert, N.L.; Klis, S.F.; Muijser, H.; De Groot, J.C.; Kulig, B.M.; Smoorenburg, G.F. The ototoxic effects of ethyl benzene in rats. Hear. Res. 1999, 137, 91–102. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, Z.; Zhou, L.; Hu, Y.; Zhang, M. Occupational noise-induced hearing loss in China: A systematic review and meta-analysis. BMJ Open 2020, 10, e039576. [Google Scholar] [CrossRef]
- Fuente, A.; McPherson, B. Organic solvents and hearing loss: The challenge for audiology. Int. J. Audiol. 2006, 45, 367–381. [Google Scholar] [CrossRef]
- Prasher, D.; Al-Hajjaj, H.; Aylott, S.; Aksentijevic, A. Effect of exposure to a mixture of solvents and noise on hearing and balance in aircraft maintenance workers. Noise Health 2005, 7, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ackley, R.; Decker, T.; Limb, C. An Essential Guide to Hearing and Balance Disorders; Lawrence Erlbaum Associates: New York, NY, USA, 2007. [Google Scholar]
- Fuente, A.; Slade, M.D.; Taylor, T.; Morata, T.C.; Keith, R.W.; Sparer, J.; Rabinowitz, P.M. Peripheral and central auditory dysfunction induced by occupational exposure to organic solvents. J. Occup. Environ. Med. 2009, 51, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, P.M.; Galusha, D.; Slade, M.D.; Dixon-Ernst, C.; O’Neill, A.; Fiellin, M.; Cullen, M.R. Organic solvent exposure and hearing loss in a cohort of aluminium workers. Occup. Environ. Med. 2008, 65, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Loukzadeh, Z.; Shojaoddiny-Ardekani, A.; Mehrparvar, A.H.; Yazdi, Z.; Mollasadeghi, A. Effect of exposure to a mixture of organic solvents on hearing thresholds in petrochemical industry workers. Iran. J. Otorhinolaryngol. 2014, 26, 235–243. [Google Scholar] [PubMed]
- Campo, P.; Lataye, R.; Loquet, G.; Bonnet, P. Styrene-induced hearing loss: A membrane insult. Hear. Res. 2001, 154, 170–180. [Google Scholar] [CrossRef]
- Johnson, A.C.; Canlon, B. Progressive hair cell loss induced by toluene exposure. Hear. Res. 1994, 75, 201–208. [Google Scholar] [CrossRef]
- Spicer, S.S.; Schulte, B.A. Evidence for a medial K+ recycling pathway from inner hair cells. Hear. Res. 1998, 118, 1–12. [Google Scholar] [CrossRef]
- Bale, A.S.; Meacham, C.A.; Benignus, V.A.; Bushnell, P.J.; Shafer, T.J. Volatile organic compounds inhibit human and rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Toxicol. Appl. Pharmacol. 2005, 205, 77–88. [Google Scholar] [CrossRef]
- Lataye, R.; Maguin, K.; Campo, P. Increase in cochlear microphonic potential after toluene administration. Hear. Res. 2007, 230, 34–42. [Google Scholar] [CrossRef]
- Campo, P.; Maguin, K.; Lataye, R. Effects of aromatic solvents on acoustic reflexes mediated by central auditory pathways. Toxicol. Sci. 2007, 99, 582–590. [Google Scholar] [CrossRef]
Study | Country | Industry | Participants | Lex[dB(A)] | Organic Solvents | Exposure Time, y (M ± SD) | Years of Follow-Up | |
---|---|---|---|---|---|---|---|---|
N | Age, y (M ± SD) | |||||||
| N.A. | Agriculture | 80 | 3.5 4.4 | 98.5 | B: Malathion (N.A) | A: 12.1 ± 5.8 B: 12.6 ± 5.4 | 1 |
| Brazil | Petrochemical plants | 172 | 44.3 | 79.1 | B: Benzene (0.43 ppm), Toluene (0.05 ppm), Xylene (0.05 ppm), Butadiene (12.25 ppm); C: Benzene (0.10 ppm), Toluene (0.05 ppm), Xylene (0.05); | N.A. | 5 |
| Brazil | Chemical products | 99 | 10.3 8.9 | A: 89 B: 93 | B: Toluene, Xylene, Turpentine, Oils, Greases, Lead Chromates and Molybdates (N.A) | A: 9.0 ± 6.5 B: 9.2 ± 5.8 | 1 |
| Poland | Chemical products | 517 | B: 38.4 ± 9.1 C: 39.3 ± 9.5 D: 38.5 ± 10.6 | B: N.A. C: N.A. D: 83 | B: Xylene (28.3 mg/m3), Ethylacetate (7.7 mg/m3), Whitespirit (7.0 mg/m3), Toluene (5.8 mg/m3), Butyl acetate (1.8 mg/m3), Ethyl benzene (7.9 mg/m3); C: Xylene (28.7 mg/m3), Ethyl acetate (11.5 mg/m3), White spirit (11.7 mg/m3), Toluene (8.4 mg/m3), Butyl acetate (8.3 mg/m3), Ethyl benzene (7.7 mg/m3) | B: N.A. C: 12.2 ± 8.5 D: 12.8 ± 8.2 | 7 |
| China (Taiwan) | Textile | 346 | A: 42.2 ± 5.8 B: 48.3 ± 8.7 D: 42.0 ± 6.2 | A: 86.5 B: 85.5 D: 78.5 | B: CS2 (N.A) | A: 12.1 ± 5.7 B: 20.8 ± 10.5 D: 11.3 ± 6.4 | 5 |
| Germany | Printing | 192 | N.A. | A: 79 B: 84 | B: Toluene (N.A) | N.A. | 5 |
| / | / | 1406 | 40.8 ± 7.7 | 85.6 | / | 12.5 ± 7.0 | / |
Study | Country | Industry | Participants | Lex[dB(A)] | Organic Solvents | Exposure Time, y (M ± SD) | |
---|---|---|---|---|---|---|---|
N | Age, y (M ± SD) | ||||||
| USA | Air Force base | 870 | N.A. | N.A. | Benzene, Ethylbenzene, Toluene, P-Xylene (N.A) | 8.7 ± 3.1 |
| USA | Air Force Reserve | 503 | 66% > 35 | A: 90 B: N.A. C: N.A. | B,C: Toluene, Xylene, Benzene, Styrene (N.A) | N.A. |
| China (Taiwan) | Stone-processing | 314 | 51.3 ± 8.5 | A: 91.3 B: 87.1 C: 80.1 | B,C: Epoxy adhesives (N.A) | A: 16.5 ± 10.6 B: 19.0 ± 10.6 C: 20.2 ± 10.7 |
| Brazil | Steel | 155 | A: 30.5 ± 6.8 B: 31.8 ± 7.5 | A: 90 B: 90 | B: Acetone, Styrene, Resins, and Cobalt (N.A) | A: 7.6 ± 3.5 B: 6.1 ± 3.3 |
| Egypt | Painting | 222 | A: 44.1 ± 9.0 B: 43.5 ± 10.9 D: 41.5 ± 8.7 | A: 87.1 B: 84.7 D: 76.0 | B: Toluene (165.67 mg/m3), Xylene (256.67 mg/m3), Ethylacetate (1160.5 mg/m3), Butanol (238 mg/m3), Isopropranolol (458 mg/m3), Acetone (1121 mg/m3), Ethanol (1412.3 mg/m3) | A: 20.5 ± 11.9 B: 18.4 ± 10.3 D: N.A. |
| Poland | Dockyard | 906 | A: 42.2 ± 9.3 B: 37.4 ± 9.2 D: 39.8 ± 9.3 | A: 90.3 B: 94.2 D: 74.1 | B: Xylene (245.2 mg/m3), Toluene (28.9 mg/m3) | N.A. |
| Brazil | Printing | 190 | A: 36.1 ± 8.2 B: 32.5 ± 7.9 C: 31.7 ± 7.2 D: 34.7 ± 9.8 | A: 92.5 B: 93 C: N.A. D: N.A. | B,C: Toluene (31.45 ppm), Xylene (19.64 ppm), Benzene (0.73 ppm), Methyl ethyl ketone (20.4 ppm), Ethanol (11.6 ppm), Methyl isobutyl ketone (10.25 ppm) | A: 11.6 ± 7.8 B: 8.1 ± 6.2 C: 5.6 ± 3.7 D: 13.1 ± 7.6 |
| Japan | Plastic manufacturing | 54 | A: 33.2 ± 11.1 B: 33.8 ± 9.0 D: 43.6 ± 15.1 | A: 84 B: 72.5 D: 60 | B: Styrene (22.4 ppm), Methanol (23.7 ppm), Methyl acetate (24.6 ppm) | N.A. |
| Korea | Aviation | 328 | A: 31.2 ± 6.1 B: 39.6 ± 4.7 C: 38.6 ± 6.0 D: 31.3 ± 6.3 | A: 93 B: N.A. C: N.A. | B,C: Methyl ethyl ketone (62.68 ppm), Toluene (0.81 ppm), Xylene (0.57 ppm), Methyl isobutyl ketone (0.22 ppm) | N.A. |
| Thailand | Manufacturing | 199 | A: 35.8 ± 7.8 B: 36.3 ± 6.0 D: 37.6 ± 8.1 | A: 83.7 B: 84.0 D: 59.5 | B: Styrene (1.1 ppm), Acetone (1.1 ppm) | A: 8.5 ± 4.4 B: 9.2 ± 3.3 D: 8.0 ± 4.1 |
| China (Taiwan) | Chemical products | 176 | A: 41.5 ± 3.1 B: 40.0 ± 9.7 D: 40.9 ± 3.4 | A: 86.8 B: 82.9 D: 70.3 | Toluene (N.A) | A: 11.5 ± 5.7 B: 12.3 ± 8.8 D: 9.5 ± 5.3 |
| Copenhagen | N.A. | 3284 | 62.9 ± 5.1 | N.A. | N.A | N.A. |
| China | Waste Landfill | 247 | 38.0 ± 11.0 | B: 66.2 C: 64.3 | B: Volatile organic (3.4 mg/m3) C: Volatile organic (0.55 mg/m3) | 11.0 ± 8.9 |
| Poland | Plastic manufacturing | 513 | A: 41.0 ± 8.4 B: 36.5 ± 8.2 C: 33.8 ± 9.1 D: 39.6 ± 9.7 | A: 89.2 B: 88.6 C: 80.3 D: 73.2 | B: Styrene (34.4 mg/m3), toluene (28.0 mg/m3) C: Styrene (59.9 mg/m3), toluene (3.4 mg/m3) | N.A. |
| Iran | Automobile | 441 | A: 33.4 ± 6.9 B: 33.5 ± 6.2 C: 31.9 ± 5.5 | A: 84.0 B: 84.3 C: N.A. | B: Benzene (0.003 mg/m3), Toluene (19 mg/m3), Xylene (137 mg/m3), Acetone (101 mg/m3) C: Benzene (2.01 mg/m3), Toluene (31 mg/m3), Xylene (388 mg/m3) | A: 8.5 ± 4.9 B: 8.1 ± 3.7 C: 7.4 ± 3.4 |
| Egypt | Fermentation | 140 | A: 28.0 ± 7.1 B: 30.2 ± 4.9 D: 31.3 ± 5.6 | A: 107.5 B: 105.5 D: N.A. | B: Toluene, Xylene, Butyl acetate, Ethyl alcohol (N.A) | N.A. |
| China | Petrochemical | 1170 | A: 38.2 ± 9.8 B: 39.5 ± 8.7 D: 37.0 ± 5.1 | A: 84.3 B: 83.1 D: 67.3 | Ethylbenzene (N.A) | A: 16.9 ± 10.1 B: 17.3 ± 9.2 |
| / | / | 9712 | 37.4 ± 7.8 | 82.9 | / | 11.8 ± 6.7 |
Group | Population | Noise Level (mean) LAeq [dB(A)] | Hearing Loss (%) | |||
---|---|---|---|---|---|---|
N | Men (%) | Mean Age (Years) | Mean Exposure Duration (Years) | |||
| 3115 | 2306 (74.0) | 39.3 | 11.9 | 88.7 | 44.9 |
| 3537 | 2430 (68.7) | 39.5 | 12.4 | 86.2 | 57.8 |
| 1006 | 860 (85.5) | 40.7 | 10.9 | 76.0 | 41.3 |
| 3460 | 3157 (91.2) | 43.8 | 12.5 | 75.6 | 24.7 |
| 11,118 | 8753 (78.7) | 40.8 | 11.9 | 81.6 | 42.2 |
Ear | Frequency (kHz) | Noise Group | Noise and Solvents Group | Solvents Group | p |
---|---|---|---|---|---|
1. Right |
| 11.41 | 11.15 | 10.17 | 0.96 |
| 13.72 | 14.39 | 14.00 | 0.96 | |
| 13.94 | 15.16 | 14.83 | 0.93 | |
| 20.98 | 21.91 | 21.88 | 0.96 | |
| 28.86 | 27.96 | 24.71 | 0.76 | |
| 26.79 | 29.47 | 28.65 | 0.79 | |
| 24.23 | 25.69 | 24.00 | 0.91 | |
| 13.02 | 13.57 | 13.00 | 0.96 | |
| 25.22 | 26.26 | 24.81 | 0.85 | |
2. Left |
| 9.69 | 10.45 | 9.00 | 0.97 |
| 12.92 | 14.65 | 13.14 | 0.85 | |
| 13.09 | 14.22 | 12.89 | 0.84 | |
| 20.42 | 21.12 | 20.88 | 0.87 | |
| 28.87 | 26.47 | 24.65 | 0.77 | |
| 26.14 | 28.33 | 28.42 | 0.82 | |
| 21.33 | 24.32 | 24.59 | 0.58 | |
| 11.90 | 13.11 | 11.68 | 0.61 | |
| 24.19 | 25.06 | 24.64 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Xie, H.; Hu, Y.; Hong, Y.; Zou, H.; Gao, X. Occupational Hearing Loss Associated with the Combined Exposure of Solvents and Noise: A Systematic Review and Meta-Analysis. Safety 2023, 9, 71. https://doi.org/10.3390/safety9040071
Ren J, Xie H, Hu Y, Hong Y, Zou H, Gao X. Occupational Hearing Loss Associated with the Combined Exposure of Solvents and Noise: A Systematic Review and Meta-Analysis. Safety. 2023; 9(4):71. https://doi.org/10.3390/safety9040071
Chicago/Turabian StyleRen, Jia, Hongwei Xie, Yong Hu, Yu Hong, Hua Zou, and Xiangjing Gao. 2023. "Occupational Hearing Loss Associated with the Combined Exposure of Solvents and Noise: A Systematic Review and Meta-Analysis" Safety 9, no. 4: 71. https://doi.org/10.3390/safety9040071
APA StyleRen, J., Xie, H., Hu, Y., Hong, Y., Zou, H., & Gao, X. (2023). Occupational Hearing Loss Associated with the Combined Exposure of Solvents and Noise: A Systematic Review and Meta-Analysis. Safety, 9(4), 71. https://doi.org/10.3390/safety9040071