Conceptual Framework for Hazards Management in the Surface Mining Industry—Application of Structural Equation Modeling
Abstract
:1. Introduction
1.1. Personal Protective Equipment (PE)
1.2. Machinery and Equipment (Me)
1.3. Training (Tr)
1.4. Law Implementation (Lw)
1.5. Management Commitment (MC)
1.6. Workers Commitment (WC)
1.7. Workplace Safety Condition (WP)
1.8. Number of Injuries/Accidents (Ac)
1.9. Job Satisfaction (JS)
2. Materials and Methods
2.1. Conceptual Framework and Hypothesis
2.2. Questionnaire Survey
3. Data Analysis and Results
3.1. Measurement Model
3.2. Structural Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, S. Development of uncertainty-based work injury model using Bayesian structural equation modelling. Int. J. Inj. Contr. Saf. Promot. 2014, 21, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.S. Predictors of work injury in underground mines—An application of a logistic regression model. Min. Sci. Technol. 2009, 19, 282–289. [Google Scholar] [CrossRef]
- Maiti, J.; Chatterjee, S.; Bangdiwala, S.I. Determinants of work injuries in mines—An application of structural equation modelling. Inj. Control Saf. Promot. 2004, 11, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Khanzode, V.V.; Maiti, J.; Ray, P.K.; Tewari, V.K. Injury severity assessment for underground coalmine workers. Appl. Ergon. 2010, 41, 242–250. [Google Scholar] [CrossRef]
- Shappell, S.; Wiegmann, D.A. The Human Factors Analysis and Classification System—HFACS. 2000. Available online: https://www.nifc.gov/fireInfo/fireInfo_documents/humanfactors_classAnly.pdf (accessed on 12 October 2022).
- Wang, J.; Yan, M. Application of an improved model for accident analysis: A case study. Int. J. Environ. Res. Public Health 2019, 16(15), 2756. [Google Scholar] [CrossRef]
- Leveson, N.G. Engineering a Safer World Systems Thinking Applied to Safety; The MIT Press: Cambridge, MA, USA; London, UK, 2011; Volume 33. [Google Scholar] [CrossRef]
- Mosey, D. Looking beyond operator—Putting people in the mix. NEI Magazine, 2014. Available online: http://www.neimagazine.com/features/featurelooking-beyond-the-operator-4447549/(accessed on 29 April 2023).
- Dekker, S.; Cilliers, P.; Hofmeyr, J.H. The complexity of failure: Implications of complexity theory for safety investigations. Saf. Sci. 2011, 49, 939–945. [Google Scholar] [CrossRef]
- Leveson, N.G. Applying systems thinking to analyze and learn from events. Saf. Sci. 2011, 49, 55–64. [Google Scholar] [CrossRef]
- Joe-Asare, T.; Amegbey, N.; Stemn, E. Human Factor Analysis Framework for Ghana’s Mining Industry. Ghana Min. J. 2020, 20, 60–76. [Google Scholar] [CrossRef]
- Wang, Y.; Griffis, F. The Theory of Zero Incident Safety Management. J. Civ. Constr. Environ. Eng. 2018, 3, 83–98. [Google Scholar] [CrossRef]
- Ajith, M.M.; Ghosh, A.K.; Jansz, J. Risk Factors for the Number of Sustained Injuries in Artisanal and Small-Scale Mining Operation. Saf. Health Work 2020, 11, 50–60. [Google Scholar] [CrossRef]
- Maiti, J.; Bhattacherjee, A. Evaluation of Risk of Occupational Injuries among Underground Coal Mine Workers through Multinomial Logit Analysis. J. Safety Res. 1999, 30, 93–101. [Google Scholar] [CrossRef]
- Chimamise, C.; Gombe, N.T.; Tshimanga, M.; Chadambuka, A.; Shambira, G.; Chimusoro, A. Factors associated with severe occupational injuries at mining company in Zimbabwe, 2010: A cross-sectional study. Pan. Afr. Med. J. 2014, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Izudi, J.; Ninsiima, V.; Alege, J.B. Use of Personal Protective Equipment among Building Construction Workers in Kampala, Uganda. J. Environ. Public Health 2017, 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Sehsah, R.; El-Gilany, A.H.; Ibrahim, A.M. Personal protective equipment (Ppe) use and its relation to accidents among construction workers. Med. Del Lav. 2020, 111, 285–295. [Google Scholar] [CrossRef]
- Ruff, T.; Coleman, P.; Martini, L. Machine-related injuries in the US mining industry and priorities for safety research. Int. J. Inj. Contr. Saf. Promot. 2011, 18, 11–20. [Google Scholar] [CrossRef]
- Groves, W.A.; Kecojevic, V.J.; Komljenovic, D. Analysis of fatalities and injuries involving mining equipment. J. Safety Res. 2007, 38, 461–470. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, A.K. The accident analysis of mobile mine machinery in Indian opencast coal mines. Int. J. Inj. Contr. Saf. Promot. 2014, 21, 54–60. [Google Scholar] [CrossRef]
- Chan, D.W.M.; Chan, A.P.C.; Choi, T.N.Y. An empirical survey of the benefits of implementing pay for safety scheme (PFSS) in the Hong Kong construction industry. J. Safety Res. 2010, 41, 433–443. [Google Scholar] [CrossRef]
- Bae, H.; Simmons, D.R.; Polmear, M. Promoting the Quarry Workers’ Hazard Identification through Formal and Informal Safety Training. Saf. Health Work 2021, 12, 317–323. [Google Scholar] [CrossRef]
- Luo, T. Safety climate: Current status of the research and future prospects. J. Saf. Sci. Resil. 2020, 1, 106–119. [Google Scholar] [CrossRef]
- Sherin, S.; Zahid -Ur-rehman, E.D.; Hussain, S.; Mohammad, N.; Raza, S. Hazards identification and risk analysis in surface mines of Pakistan using fault tree analysis technique. Min. Miner. Depos. 2021, 15, 119–126. [Google Scholar] [CrossRef]
- Aliabadi, M.M.; Aghaei, H.; Kalatpour, O.; Soltanian, A.R.; SeyedTabib, M. Effects of human and organizational deficiencies on workers’ safety behavior at a mining site in Iran. Epidemiol. Health 2018, 40, e2018019. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, A.K.; Essenmacher, L.; Hamblin, L.; Luborsky, M.; Upfal, M.; Arnetz, J. Management Commitment to Safety, Teamwork, and Hospital Worker Injuries. J. Hosp. Adm. 2016, 5, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Miller, S.P.; Whalen, M.; Heimdahl, M.P.E. A proposal for model-based safety analysis. In Proceedings of the AIAA/IEEE Digital Avionics Systems Conference, Forth Worth, TX, USA, 25–28 October 2005; Volume 2. [Google Scholar] [CrossRef]
- Zohar, D. Safety Climate: Conceptualization, Measurement, and Improvement. In The Oxford Handbook of Organizational Climate and Culture; Schneider, B., Barbera, K.M., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 317–334. [Google Scholar] [CrossRef]
- Naji, G.M.A.; Isha, A.S.N.; Mohyaldinn, M.E.; Leka, S.; Saleem, M.S.; Rahman, S.M.N.B.S.A.; Alzoraiki, M. Impact of safety culture on safety performance; mediating role of psychosocial hazard: An integrated modelling approach. Int. J. Environ. Res. Public Health 2021, 18, 8568. [Google Scholar] [CrossRef] [PubMed]
- Ural, S.; Demirkol, S. Evaluation of occupational safety and health in surface mines. Saf. Sci. 2008, 46, 1016–1024. [Google Scholar] [CrossRef]
- Michelo, P.; Bråtveit, M.; Moen, B.E. Occupational injuries and fatalities in copper mining in Zambia. Occup. Med. 2009, 59, 191–194. [Google Scholar] [CrossRef]
- Kasap, Y.; Subası, E. Risk assessment of occupational groups working in open pit mining: Analytic Hierarchy Process. J. Sustain. Min. 2017, 16, 38–46. [Google Scholar] [CrossRef]
- Wirth, O.; Sigurdsson, S.O. When workplace safety depends on behavior change: Topics for behavioral safety research. J. Safety Res. 2008, 39, 589–598. [Google Scholar] [CrossRef]
- Opoku, F.K.; Kosi, I.; Degraft-arthur, D. Enhancing Workplace Safety Culture in the Mining Industry in Ghana. Ghana J. Dev. Stud. 2020, 17, 23–48. [Google Scholar] [CrossRef]
- Elenge, M.; Leveque, A.; De Brouwer, C. Occupational accidents in artisanal mining in Katanga, D.R.C. Int. J. Occup. Med. Environ. Health 2013, 26, 265–274. [Google Scholar] [CrossRef]
- Mangal, A.; Paul, P.S.; Mishra, K. A before Math Analysis of Mine Accident and Safety Research—A Bayesian Structural Equation Modelling Approach. In Proceedings of the International Conference on Deep Excavation, Energy Resources and Production, Kharagpur, India, 24–26 January 2017; Volume 2017, pp. 1–8. [Google Scholar]
- Bushiri, C.P. The Impact of Working Environment on Employees’ Performance: The Case of Institute of Finance Management in Dar Es Salaam Region. Master’s Thesis, Human Resource Management Open University, Dar es Salaam, Tanzania, 2014; p. 88. [Google Scholar]
- Saidi, N.S.A.; Michael, F.L.; Sumilan, H.; Lim, S.L.O.; Jonathan, V.; Hamidi, H.; Ahmad, A.I.A. The Relationship between Working Environment and Employee Performance. J. Cogn. Sci. Hum. Dev. 2019, 5, 14–22. [Google Scholar] [CrossRef]
- Paul, P.S.; Maiti, J. The role of behavioral factors on safety management in underground mines. Saf. Sci. 2007, 45, 449–471. [Google Scholar] [CrossRef]
- Machfudiyanto, R.A.; Latief, Y. A conceptual framework to development of construction safety culture in Indonesia. In Proceedings of the IOP Conference Series Earth and Environmental Science, Yogyakarta, Indonesia, 14–15 November 2017. [Google Scholar] [CrossRef]
- Zhang, M.; Kecojevic, V.; Komljenovic, D. Investigation of haul truck-related fatal accidents in surface mining using fault tree analysis. Saf. Sci. 2014, 65, 106–117. [Google Scholar] [CrossRef]
- Sanmiquel, L.; Bascompta, M.; Rossell, J.M.; Anticoi, H.F.; Guash, E. Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques. Int. J. Environ. Res. Public Health 2018, 15, 462. [Google Scholar] [CrossRef]
- Maiti, J.; Bhattacherjee, A. A causal model for evaluation of mine safety. Inst. Min. Metall. Trans. Sect. A Min. Technol. 2000, 109, 55–59. [Google Scholar] [CrossRef]
- Akyuz, E. A marine accident analysing model to evaluate potential operational causes in cargo ships. Saf. Sci. 2017, 92, 17–25. [Google Scholar] [CrossRef]
- Vierendeels, G.; Reniers, G.; van Nunen, K.; Ponnet, K. An integrative conceptual framework for safety culture: The Egg Aggregated Model (TEAM) of safety culture. Saf. Sci. 2018, 103, 323–339. [Google Scholar] [CrossRef]
- Swuste, P.; van Gulijk, C.; Zwaard, W. Safety metaphors and theories, a review of the occupational safety literature of the US, UK and The Netherlands, till the first part of the 20th century. Saf. Sci. 2010, 48, 1000–1018. [Google Scholar] [CrossRef]
- BS ISO31000; 2018 BSI Standards Publication Risk Management—Guidelines. BSI: London, UK, 2018; p. 26, ISBN 978-0-539-08191-6. Available online: https://www.ashnasecure.com/uploads/standards/BS%20ISO%2031000-2018.pdf (accessed on 10 November 2022).
- Montibeller, G.; von Winterfeldt, D. Cognitive and Motivational Biases in Decision and Risk Analysis. Risk Anal. 2015, 35, 1230–1251. [Google Scholar] [CrossRef]
- Komljenovic, D.; Loiselle, G.; Kumral, M. Organization: A new focus on mine safety improvement in a complex operational and business environment. Int. J. Min. Sci. Technol. 2017, 27, 617–625. [Google Scholar] [CrossRef]
- Chinda, T.; Suanmali, S.; Ammarapala, V. Structural Equation Model of Safety Implementation and Productivity in the Textile Industry. Thammasat Int. J. Sci. Technol. 2017, 22, 46–60. [Google Scholar] [CrossRef]
- Hidayat, R.; Norul, S.S.A.; Zulnaidi, H. Exploratory and Confirmatory Factor Analysis of Achievement Goals for Indonesian Students in Mathematics Education Programmes. Eurasia J. Math. Sci. Technol. Educ. 2018, 14, 12. [Google Scholar] [CrossRef]
- Mphahlele, P.; Els, C.; De Beer, L.T.; Mostert, K. Investigating strengths and deficits to increase work engagement: A longitudinal study in the mining industry. SA J. Hum. Resour. Manag. 2018, 16, 1–16. [Google Scholar] [CrossRef]
- Plucker, J.A. Exploratory and Confirmatory Factor Analysis in Gifted Education: Examples with Self-Concept Data. J. Educ. Gift. 2003, 27, 20–35. [Google Scholar] [CrossRef]
- Koyuncu, İ.; Kılıç, A.F. The use of exploratory and confirmatory factor analyses: A document analysis. Educ. Sci. 2019, 44, 361–388. [Google Scholar] [CrossRef]
- Xu, S.; Zou, P.X.W.; Luo, H. Impact of Attitudinal Ambivalence on Safety Behaviour in Construction. Hindawai Adv. Civ. Eng. 2018, 2018, 12. [Google Scholar] [CrossRef]
- Amponsah-Tawiah, K.; Jain, A.; Leka, S.; Hollis, D.; Cox, T. Examining psychosocial and physical hazards in the Ghanaian mining industry and their implications for employees’ safety experience. J. Safety Res. 2013, 45, 75–84. [Google Scholar] [CrossRef]
- Rashed, F.; Deluyi, A.H.M.; Dauda, K. Developing a mathematical model of entrepreneurship based on transformational leadership behavior. J. Teknol. 2015, 72, 13–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, W.; Zhang, M.; Li, H.; Yin, S.; Xu, Y. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables. Accid. Anal. Prev. 2016, 92, 189–201. [Google Scholar] [CrossRef]
- Akbari, H.; Kashani, M.M.; Asadi, Z.; Kaveh, M.; Saberi, H. The Relationship between Job Satisfaction and the Incidence of Unsafe Acts in Metal Smelting Industry Workers in 2017. Int. Arch. Heal. Sci. 2019, 6, 127–131. [Google Scholar] [CrossRef]
- Raziq, A.; Maulabakhsh, R. Impact of Working Environment on Job Satisfaction. Procedia Econ. Financ. 2015, 23, 717–725. [Google Scholar] [CrossRef]
- Sanmiquel, L.; Freijo, M.; Edo, J.; Rossell, J.M. Analysis of work related accidents in the Spanish mining sector from 1982–2006. J. Safety Res. 2010, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kecojevic, V.; Komljenovic, D.; Groves, W.; Radomsky, M. An analysis of equipment-related fatal accidents in U.S. mining operations: 1995–2005. Saf. Sci. 2007, 45, 864–874. [Google Scholar] [CrossRef]
- Dominic, P.; Psychol, C.C.; State, E. The Impact of Management’ s Commitment on Employee Behavior: A Field Study. In Proceedings of the American Society of Safety Engineers Middle East Chapter, 7th Professional Development Conference & Exhibition, Manama, Kingdom of Bahrain, 18–22 March 2006. [Google Scholar]
KMO and Bartlett Test | ||
---|---|---|
KMO Measure of Sampling Adequacy | 0.939 | |
Bartlett’s Test of Sphericity | Approx. Chi-Square | 50,568.203 |
df | 1035 | |
Sig. | 0.000 |
Factors | Communalities | Factors Cronbach’s Alpha | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.952 | 0.936 | 0.923 | 0.940 | 0.885 | 0.877 | 0.927 | 0.913 | 0.854 | |||
Factors Pattern Matrix | |||||||||||
Initial | Extraction | MC | WP | Lw | JS | Tr | PE | WC | Me | Ac | |
Ac_1 | 0.455 | 0.473 | 0.672 | ||||||||
Ac_2 | 0.722 | 0.819 | 0.908 | ||||||||
Ac_3 | 0.396 | 0.412 | 0.632 | ||||||||
Ac_4 | 0.719 | 0.829 | 0.928 | ||||||||
JS_1 | 0.813 | 0.849 | 0.948 | ||||||||
JS_2 | 0.800 | 0.804 | 0.927 | ||||||||
JS_3 | 0.683 | 0.667 | 0.777 | ||||||||
JS_4 | 0.726 | 0.666 | 0.737 | ||||||||
JS_5 | 0.811 | 0.839 | 0.939 | ||||||||
Lw_1 | 0.636 | 0.607 | 0.761 | ||||||||
Lw_2 | 0.755 | 0.793 | 0.913 | ||||||||
Lw_3 | 0.735 | 0.766 | 0.880 | ||||||||
Lw_4 | 0.767 | 0.794 | 0.892 | ||||||||
Lw_5 | 0.575 | 0.588 | 0.803 | ||||||||
Lw_6 | 0.554 | 0.546 | 0.608 | ||||||||
Me_1 | 0.646 | 0.703 | 0.830 | ||||||||
Me_2 | 0.662 | 0.727 | 0.859 | ||||||||
Me_3 | 0.701 | 0.777 | 0.881 | ||||||||
Me_4 | 0.641 | 0.701 | 0.841 | ||||||||
MC_1 | 0.727 | 0.743 | 0.860 | ||||||||
MC_2 | 0.746 | 0.765 | 0.867 | ||||||||
MC_3 | 0.759 | 0.787 | 0.881 | ||||||||
MC_4 | 0.646 | 0.659 | 0.842 | ||||||||
MC_5 | 0.737 | 0.745 | 0.855 | ||||||||
MC_6 | 0.723 | 0.736 | 0.831 | ||||||||
MC_7 | 0.747 | 0.778 | 0.910 | ||||||||
PE_1 | 0.553 | 0.588 | 0.709 | ||||||||
PE_2 | 0.524 | 0.564 | 0.705 | ||||||||
PE_3 | 0.592 | 0.662 | 0.856 | ||||||||
PE_4 | 0.492 | 0.538 | 0.775 | ||||||||
PE_5 | 0.577 | 0.643 | 0.788 | ||||||||
Tr_1 | 0.470 | 0.471 | 0.606 | ||||||||
Tr_2 | 0.574 | 0.586 | 0.734 | ||||||||
Tr_3 | 0.688 | 0.711 | 0.872 | ||||||||
Tr_4 | 0.547 | 0.527 | 0.698 | ||||||||
Tr_5 | 0.721 | 0.823 | 0.973 | ||||||||
WC_1 | 0.532 | 0.530 | 0.710 | ||||||||
WC_2 | 0.802 | 0.842 | 0.939 | ||||||||
WC_3 | 0.839 | 0.898 | 0.946 | ||||||||
WC_4 | 0.778 | 0.809 | 0.891 | ||||||||
WP_1 | 0.591 | 0.602 | 0.712 | ||||||||
WP_2 | 0.662 | 0.669 | 0.782 | ||||||||
WP_3 | 0.702 | 0.743 | 0.892 | ||||||||
WP_4 | 0.693 | 0.725 | 0.850 | ||||||||
WP_5 | 0.719 | 0.762 | 0.900 | ||||||||
WP_6 | 0.747 | 0.787 | 0.915 |
Factor Correlation Matrix | |||||||||
---|---|---|---|---|---|---|---|---|---|
Factor | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1.000 | ||||||||
2 | 0.412 | 1.000 | |||||||
3 | 0.355 | 0.355 | 1.000 | ||||||
4 | 0.456 | 0.443 | 0.401 | 1.000 | |||||
5 | 0.445 | 0.404 | 0.391 | 0.470 | 1.000 | ||||
6 | 0.389 | 0.392 | 0.310 | 0.416 | 0.372 | 01.000 | |||
7 | 0.326 | 0.337 | 0.407 | 0.352 | 0.345 | 0.309 | 1.000 | ||
8 | 0.403 | 0.359 | 0.300 | 0.387 | 0.357 | 0.296 | 0.218 | 1.000 | |
9 | −0.165 | −0.239 | −0.212 | −0.209 | −0.173 | −0.174 | −0.167 | −0.149 | 1.000 |
Measurement Model | X2 | DF | X2/DF | CFI | TLI | IFI | PCFI | RMEA | PCLOSE |
---|---|---|---|---|---|---|---|---|---|
1 | 2730.0 | 951 | 2.871 | 0.965 | 0.961 | 0.965 | 0.890 | 0.037 | 1.0 |
CR | AVE | MC | WP | Lw | JS | Tr | PE | WC | Me | Ac | |
---|---|---|---|---|---|---|---|---|---|---|---|
MC | 0.953 | 0.742 | 0.861 * | ||||||||
WP | 0.936 | 0.711 | 0.403 *** | 0.843 | |||||||
Lw | 0.924 | 0.672 | 0.357 *** | 0.353 *** | 0.820 | ||||||
JS | 0.936 | 0.746 | 0.450 *** | 0.430 *** | 0.393 *** | 0.864 | |||||
Tr | 0.889 | 0.617 | 0.426 *** | 0.378 *** | 0.383 *** | 0.451 *** | 0.786 | ||||
PE | 0.878 | 0.590 | 0.392 *** | 0.391 *** | 0.313 *** | 0.414 *** | 0.365 *** | 0.768 | |||
WC | 0.929 | 0.767 | 0.318 *** | 0.328 *** | 0.406 *** | 0.337 *** | 0.326 *** | 0.304 *** | 0.876 | ||
Me | 0.913 | 0.725 | 0.401 *** | 0.355 *** | 0.297 *** | 0.380 *** | 0.342 *** | 0.301 *** | 0.210 *** | 0.851 | |
Ac | 0.869 | 0.629 | −0.138 *** | −0.214 *** | −0.194 *** | −0.185 *** | −0.137 *** | −0.157 *** | −0.147 *** | −0.131 *** | 0.793 |
Model | X2 | DF | X2/DF | CFI | TLI | IFI | PCFI | RMEA | PCLOSE |
---|---|---|---|---|---|---|---|---|---|
1 | 3818.925 | 959 | 3.982 | 0.943 | 0.938 | 0.943 | 0.874 | 0.047 | 1.0 |
2 | 2433.49 | 956 | 2.545 | 0.971 | 0.968 | 0.971 | 0.896 | 0.034 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherin, S.; Raza, S.; Ahmad, I. Conceptual Framework for Hazards Management in the Surface Mining Industry—Application of Structural Equation Modeling. Safety 2023, 9, 31. https://doi.org/10.3390/safety9020031
Sherin S, Raza S, Ahmad I. Conceptual Framework for Hazards Management in the Surface Mining Industry—Application of Structural Equation Modeling. Safety. 2023; 9(2):31. https://doi.org/10.3390/safety9020031
Chicago/Turabian StyleSherin, Saira, Salim Raza, and Ishaq Ahmad. 2023. "Conceptual Framework for Hazards Management in the Surface Mining Industry—Application of Structural Equation Modeling" Safety 9, no. 2: 31. https://doi.org/10.3390/safety9020031
APA StyleSherin, S., Raza, S., & Ahmad, I. (2023). Conceptual Framework for Hazards Management in the Surface Mining Industry—Application of Structural Equation Modeling. Safety, 9(2), 31. https://doi.org/10.3390/safety9020031