The Effect of Geometric Road Conditions on Safety Performance of Abu Dhabi Road Intersections
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Crash-Based Model
1.2.2. The Effect of Geometric Design on Highway Safety Performance
2. Materials and Methods
2.1. Research Data Source
2.2. The Model Employed
- i.
- ii.
- Xi = Geometric road conditions (main through, main left, minor through, and minor left). “Main through” means the main road passes through the intersection, “main left” means the main road turns left at the intersection, “minor through” means it passes through the intersection without making any turns, and “minor left” represents a minor road turning left at the intersection [20,47,48,49,50].
- iii.
2.3. Research Limitations
2.4. Validity and Reliability
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Regression Results
3.2.1. The Effect of Geometric Conditions on the Safety Performance of Four-Leg Intersections
3.2.2. The Effect of Geometric Conditions on the Safety Performance of Three-Leg Intersections
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alghafli, A.; Shawky, M. Operational and Geometrical Conditions of Accident Occurrence and Severity at Signalized Intersections. In International Conference on Applied Human Factors and Ergonomics; Springer: Berlin, Germany, 2020. [Google Scholar]
- Agent, K.R. Relationships between Roadway Geometrics and Accidents (An Analysis of Kentucky Records); Kentucky Transportation Center Research Report; Kentucky Transportation Center: Lexington, KY, USA, 1974. [Google Scholar]
- Burchett, G.D. Rural Expressway Intersection Characteristics that Contribute to a Reduced Safety Performance. Master’s Thesis, Iowa State University, Ames, IA, USA, 2005. [Google Scholar]
- Tibljaš, A.D.; Giuffrè, T.; Surdonja, S.; Trubia, S. Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation. Sustainability 2018, 10, 1060. [Google Scholar] [CrossRef] [Green Version]
- Harwood, D.W.; Council, F.M.; Hauer, E.; Hughes, W.E.; Vogt, A. Prediction of the Expected Safety Performance of Rural Two-Lane Highways; Federal Highway Administration: Washington, DC, USA, 2000. [Google Scholar]
- Lord, D.; Persaud, B.N. Estimating the Safety Performance of Urban Road Transportation Networks. Accid. Anal. Prev. 2004, 36, 609–620. [Google Scholar] [CrossRef]
- Zewde, T. Determinants that lead drivers into traffic accidents: A case of Arba Minch city, south Ethiopia. Sci. J. Appl. Math Stat. 2017, 5, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Shao, C.; Li, J.; Xiong, Z. An Improved Deep Learning Model for Traffic Crash Prediction. J. Adv. Transp. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Abdel-Aty, M.A.; Radwan, A.E. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 2000, 32, 633–642. [Google Scholar] [CrossRef]
- Bobermin, M.; Ferreira, S. A novel approach to set driving simulator experiments based on traffic crash data. Accid. Anal. Prev. 2021, 150, 105938. [Google Scholar] [CrossRef] [PubMed]
- Haleem, K.; Abdel-Aty, M. Examining traffic crash injury severity at unsignalized intersections. J. Saf. Res. 2010, 41, 347–357. [Google Scholar] [CrossRef]
- Othman, S.; Thomson, R.; Lannér, G. Identifying critical road geometry parameters affecting crash rate and crash type. In Annals of Advances in Automotive Medicine/Annual Scientific Conference; Association for the Advancement of Automotive Medicine: Western Region, Sweden, 2009. [Google Scholar]
- Quddus, M.A.; Wang, C.; Ison, S.G. Road traffic congestion and crash severity: Econometric analysis using ordered response models. J. Transp. Eng. 2010, 136, 424–435. [Google Scholar] [CrossRef]
- Mussone, L.; Bassani, M.; Masci, P. Analysis of factors affecting the severity of crashes in urban road intersections. Accid. Anal. Prev. 2017, 103, 112–122. [Google Scholar] [CrossRef]
- Russo, F.; Busiello, M.; Dell, G. Safety performance functions for crash severity on undivided rural roads. Accid. Anal. Prev. 2016, 93, 75–91. [Google Scholar] [CrossRef]
- Savolainen, P.T.; Gate, T.; Lord, D.; Geedipally, S.; Rista, E.; Barrette, T.; Russ, B.J.; Hamzeie, R. Michigan Urban Trunkline Intersections Safety Performance Functions (SPFs) Development and Support; Michigan Department of Transportation: Lansing, MI, USA, 2015. [Google Scholar]
- Ulak, M.B.; Ozguven, E.E.; Karabag, H.H.; Ghorbanzadeh, M.; Moses, R.; Dulebenets, M. Development of Safety Performance Functions for Restricted Crossing U-Turn Intersections. J. Transp. Eng. Part A Syst. 2020, 146, 04020038. [Google Scholar] [CrossRef]
- Wang, X.; Abdel-Aty, M.; Nevarez, A.; Santos, J.B. Investigation of safety influence area for four-legged signalized intersections: Nationwide survey and empirical inquiry. Transp. Res. Rec. 2008, 2083, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Famoye, F. On the bivariate negative binomial regression model. J. Appl. Stat. 2010, 37, 969–981. [Google Scholar] [CrossRef]
- Famoye, F. A multivariate generalized Poisson regression model. Commun. Stat.-Theory Methods 2015, 44, 497–511. [Google Scholar] [CrossRef]
- Garay, A.M.; Hashimoto, E.M.; Ortega, E.M.; Lachos, V.H. On estimation and influence diagnostics for zero-inflated negative binomial regression models. Comput. Stat. Data Anal. 2011, 55, 1304–1318. [Google Scholar] [CrossRef]
- Gastaldi, M.; Rossi, R.; Gecchele, G.; Della Lucia, L. Annual Average Daily Traffic Estimation from Seasonal Traffic Counts. Procedia-Soc. Behav. Sci. 2013, 87, 279–291. [Google Scholar] [CrossRef]
- Geedipally, S.R.; Turner, P.A.; Patil, S. Analysis of motorcycle crashes in Texas with multinomial logit model. Transp. Res. Rec. 2011, 2265, 62–69. [Google Scholar] [CrossRef]
- Hilbe, J.M. Negative Binomial Regression; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Lin, L.; Wang, Q.; Sadek, A.W. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations. Accid. Anal. Prev. 2016, 91, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Geedipally, S.R.; Lord, D. Analysis of crash severities using nested logit model—accounting for the underreporting of crashes. Accid. Anal. Prev. 2012, 45, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Razi-Ardakani, H.; Mahmoudzadeh, A.; Kermanshah, M. A Nested Logit analysis of the influence of distraction on types of vehicle crashes. Eur. Transp. Res. Rev. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Shamo, B.; Asa, E.; Membah, J. Linear spatial interpolation and analysis of annual average daily traffic data. J. Comput. Civ. Eng. 2015, 29, 04014022. [Google Scholar] [CrossRef]
- Wang, T. Improved Annual Average Daily Traffic (AADT) Estimation for Local Roads Using Parcel-Level Travel Demand Modeling. Ph.D. Thesis, Florida International University, Miami, FL, USA, 2012. [Google Scholar]
- Wu, Q.; Zhang, G.; Zhu, X.; Liu, X.C.; Tarefder, R. Analysis of driver injury severity in single-vehicle crashes on rural and urban roadways. Accid. Anal. Prev. 2016, 94, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Berdine, G. The negative binomial regression. Southwest Respir. Crit. Care Chron. 2015, 3, 50–54. [Google Scholar]
- Ye, F.; Lord, D. Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Anal. Methods Accid. Res. 2014, 1, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Brimley, B.K.; Schultz, G.G. Transportation safety data and analysis. In Calibration of the Highway Safety Manual and Development of New Safety Performance Functions; Utah Department of Transportation. Research Division: Taylorsville, UT, USA, 2011; Volume 2. [Google Scholar]
- Strauss, J.; Miranda-Moreno, L.F.; Morency, P. Multimodal injury risk analysis of road users at signalized and non-signalized intersections. Accid. Anal. Prev. 2014, 71, 201–209. [Google Scholar] [CrossRef]
- Chen, H.; Cao, L.; Logan, D.B. Analysis of risk factors affecting the severity of intersection crashes by logistic regression. Traffic Inj. Prev. 2012, 13, 300–307. [Google Scholar] [CrossRef]
- Dolatsara, H.A. Development of Safety Performance Functions for Non-Motorized Traffic Safety; Citeseer: State College, PA, USA, 2014. [Google Scholar]
- Kanellaidis, G.; Vardaki, S. Highway geometric design from the perspective of recent safety developments. J. Transp. Eng. 2011, 137, 841–844. [Google Scholar] [CrossRef]
- Mitra, S.; Bhowmick, D. Status of signalized intersection safety-a case study of Kolkata. Accid. Anal. Prev. 2020, 141, 105525. [Google Scholar] [CrossRef]
- Rosolino, V.; Teresa, I.; Vittorio, A.; Carmine, F.D.; Antonio, T.; Daniele, R.; Claudio, Z. Road Safety Performance Assessment: A New Road Network Risk Index for Info Mobility. Procedia-Soc. Behav. Sci. 2014, 111, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Vayalamkuzhi, P.; Amirthalingam, V. Influence of geometric design characteristics on safety under heterogeneous traffic flow. J. Traffic Transp. Eng. 2016, 3, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Casado-Sanz, N.; Guirao, B.; Galera, A.L.; Attard, M. Investigating the Risk Factors Associated with the Severity of the Pedestrians Injured on Spanish Crosstown Roads. Sustainability 2019, 11, 5194. [Google Scholar] [CrossRef] [Green Version]
- Bíl, M.; Andrášik, R.; Sedoník, J. Which curves are dangerous? A network-wide analysis of traffic crash and infrastructure data. Transp. Res. Part A Policy Pract. 2019, 120, 252–260. [Google Scholar] [CrossRef]
- Brod, D. Comprehensive Costs of Highway-Rail Grade Crossing Crashes; Transportation Research Board: Washington, DC, USA, 2013; Volume 755. [Google Scholar]
- Famoye, F.; Wulu, J.T.; Singh, K.P. On the generalized Poisson regression model with an application to accident data. J. Data Sci. 2004, 2, 287–295. [Google Scholar] [CrossRef]
- Hayat, M.J.; Higgins, M. Understanding poisson regression. J. Nurs. Educ. 2014, 53, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.S.; Tenreyro, S. On the existence of the maximum likelihood estimates in Poisson regression. Econ. Lett. 2010, 107, 310–312. [Google Scholar] [CrossRef] [Green Version]
- Zamani, H.; Ismail, N. Functional form for the generalized Poisson regression model. Commun. Stat.-Theory Methods 2012, 41, 3666–3675. [Google Scholar] [CrossRef]
- Flowerdew, R. Modelling Migration with Poisson Regression. In Technologies for Migration and Commuting Analysis Spatial Interaction Data Applications; IGI Global: Hershey, PA, USA, 2010; pp. 261–279. [Google Scholar]
- Sellers, K.F.; Shmueli, G. A flexible regression model for count data. Ann. Appl. Stat. 2010, 4, 943–961. [Google Scholar] [CrossRef] [Green Version]
- Türkan, S.; Özel, G. A new modified Jackknifed estimator for the Poisson regression model. J. Appl. Stat. 2016, 43, 1892–1905. [Google Scholar] [CrossRef]
- Zou, G.; Donner, A. Extension of the modified Poisson regression model to prospective studies with correlated binary data. Stat. Methods Med. Res. 2013, 22, 661–670. [Google Scholar] [CrossRef]
- Al-Atawi, A.M. Characteristics of red light running violations in urban areas in Tabuk, Kingdom of Saudi Arabia. IATSS Res. 2014, 37, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Mane, A.S.; Pulugurtha, S.S. Influence of on-network, traffic, signal, demographic, and land use characteristics by area type on red light violation crashes. Accid. Anal. Prev. 2018, 120, 101–113. [Google Scholar] [CrossRef]
- Porter, B.E.; England, K.J. Predicting red-light running behavior: A traffic safety study in three urban settings. J. Saf. Res. 2000, 31, 1–8. [Google Scholar] [CrossRef]
- Schattler, K.L.; McAvoy, P.D.; Glauber, C.M. Impact of signal mounting configurations on red-light running at urban signalized intersections. Inst. Transp. Eng. J. 2011, 81, 22. [Google Scholar]
- Zhao, J.; Liu, Y. Safety evaluation of intersections with dynamic use of exit-lanes for left-turn using field data. Accid. Anal. Prev. 2017, 102, 31–40. [Google Scholar] [CrossRef]
Variable | Abu Dhabi | EU | US | Australia |
---|---|---|---|---|
Crash location | Yes | |||
Crash narrative | Yes | No | No | Yes |
Sketch | Yes | No | No | Yes |
Crash type | Yes | Yes | Yes | Yes |
Collision type | Yes | Yes | Yes | Yes |
Weather conditions | Yes | Yes | Yes | Yes |
Light conditions | Yes | Yes | Yes | Yes |
Definition of fatal and non-fatal injury levels | Yes | Yes | Yes | Yes |
Fatalities | Yes | No | Yes | Yes |
Link with hospital data | No | No | No | Yes |
Contributing factors | Yes | No | Yes | Yes |
Speed limit | Yes | Yes | Yes | Yes |
Surface conditions | Yes | Yes | Yes | Yes |
Road curve | No | No | Yes | Yes |
Road segment | No | No | Yes | No |
Age | Yes | Yes | Yes | Yes |
Gender | Yes | Yes | Yes | Yes |
Nationality | Yes | Yes | No | Yes |
Injury status | Yes | No | Yes | Yes |
Driver actions | Yes | Yes | Yes | Yes |
Annual average daily traffic (AADT) | Yes | No | Yes | No |
Pedestrian action | Yes | Yes | Yes | Yes |
Violating codes | Yes | No | No | No |
Safety equipment | Yes | Yes | Yes | Yes |
Sitting position | No | No | Yes | Yes |
Curve radius | No | No | Yes | Yes |
Length | No | No | Yes | Yes |
Variables | No. of Violations | Severe Accidents | Property Damage Accidents |
---|---|---|---|
Direction 1 | |||
(No. of lanes and geometry) | |||
Main through | −0.543 ** | 0.233 | 0.014 |
(0.345) | (0.415) | (0.408) | |
Main left | 0.271 | −0.084 | −0.401 |
(0.388) | (0.393) | (0.416) | |
Minor through | 0.577 *** | 0.409 ** | 0.269 |
(0.173) | (0.189) | (0.189) | |
Minor left | −0.622 * | 0.592 * | 0.791 * |
(0.347) | (0.349) | (0.357) | |
Main speed | 0.060 *** | 0.053 *** | 0.008 |
(0.020) | (0.020) | (0.025) | |
Average traffic volume per hour | −0.000 | −0.000 | −0.000 |
(0.000) | (0.000) | (0.000) | |
Constant | 3.736 ** | −4.460 ** | −1.929 |
(1.639) | (1.815) | (2.051) | |
Observations | 33 | 33 | 33 |
Direction 2 | |||
(No. of lanes and geometry) | |||
Main through | −0.843 ** | 0.277 | 0.218 |
(0.334) | (0.390) | (0.381) | |
Main left | 0.376 | −0.134 | −0.719 |
(0.404) | (0.459) | (0.555) | |
Minor through | 0.841 *** | 0.215 | −0.329 |
(0.272) | (0.280) | (0.315) | |
Minor left | −0.379 | 0.395 | 1.087 * |
(0.499) | (0.505) | (0.568) | |
Main speed | 0.079 *** | 0.043 ** | −0.014 |
(0.020) | (0.021) | (0.025) | |
Average traffic volume per h | −0.000 | −0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | |
Constant | 2.163 | −3.050 ** | 0.572 |
(1.413) | (1.511) | (1.854) | |
Observations | 33 | 33 | 33 |
Variables | No. of Violations | Severe Accidents | Property Damage Accidents |
---|---|---|---|
Direction 1 | |||
(No. of lanes and geometry) | |||
Main through | −0.187 | −1.115 | 5.234 *** |
(0.679) | (0.759) | (0.533) | |
Main left | −0.213 | −0.986 | 1.558 * |
(0.521) | (0.727) | (0.933) | |
Minor through | −1.222 *** | 0.654 ** | 1.011 * |
(0.343) | (0.260) | (0.593) | |
Minor left | −0.074 | −0.136 | 1.310 *** |
(0.251) | (0.292) | (0.345) | |
Main speed | 0.162 ** | 0.145 ** | 0.153 |
(0.223) | (0.225) | (0.227) | |
Av. traffic volume/h | 0.000 | 0.001 ** | −0.000 |
(0.000) | (0.000) | (0.000) | |
Constant | 8.483 *** | 3.210 | −19.810 |
(2.545) | (2.637) | (0.000) | |
Observations | 11 | 11 | 11 |
Direction 2 | |||
Main through | −0.966 * | −0.438 | 1.793 |
(0.545) | (0.636) | (1.831) | |
Main left | 0.105 | 3.515 | 9.941 |
(0.626) | (9.223) | (92.929) | |
Minor through | −1.314 *** | 0.700 *** | −0.205 |
(0.311) | (0.256) | (0.962) | |
Minor left | 0.115 | −0.156 | −1.173 |
(0.244) | (0.355) | (1.099) | |
Main speed | 0.092 ** | 0.075 ** | 0.085 |
(0.023) | (0.025) | (0.027) | |
Av. traffic volume/h | 0.000 | 0.001 ** | 0.000 |
(0.000) | (0.000) | (0.001) | |
Constant | 10.274 *** | −3.122 | −14.442 |
(1.725) | (9.384) | (93.088) | |
Observations | 11 | 11 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghafli, A.; Mohamad, E.; Ahmed, A.Z. The Effect of Geometric Road Conditions on Safety Performance of Abu Dhabi Road Intersections. Safety 2021, 7, 73. https://doi.org/10.3390/safety7040073
Alghafli A, Mohamad E, Ahmed AZ. The Effect of Geometric Road Conditions on Safety Performance of Abu Dhabi Road Intersections. Safety. 2021; 7(4):73. https://doi.org/10.3390/safety7040073
Chicago/Turabian StyleAlghafli, Abdulla, Effendi Mohamad, and Al Zaidy Ahmed. 2021. "The Effect of Geometric Road Conditions on Safety Performance of Abu Dhabi Road Intersections" Safety 7, no. 4: 73. https://doi.org/10.3390/safety7040073
APA StyleAlghafli, A., Mohamad, E., & Ahmed, A. Z. (2021). The Effect of Geometric Road Conditions on Safety Performance of Abu Dhabi Road Intersections. Safety, 7(4), 73. https://doi.org/10.3390/safety7040073