A Rare Event Modelling Approach to Assess Injury Severity Risk of Vulnerable Road Users
Abstract
:1. Introduction
2. Methodology
2.1. Resampling Techniques
2.1.1. Undersampling
2.1.2. Oversampling
2.1.3. ROSE
2.2. Supervised Learning Classifiers
2.2.1. Decision Tree
2.2.2. Logistic Regression
2.3. Data Description and Case Studies
2.4. Pre-Processing Data
- VRU profile: gender and age group;
- Temporal variables: month, weekday and time period;
- Weather conditions: subdivided into good or bad (including any adverse situation, e.g., rain, fog, snow, strong winds);
- Luminosity: subdivided based on the national authority classification as daylight, sun glare, dawn or dusk, night with road lights or night without road lights;
- Road characteristics: describing the conservation conditions of the pavement (road conditions) and the presence of road surface markings for separating directions or directions and lanes (road markings).
3. Results
- To evaluate the most efficient prediction model based on three resampling techniques (undersampling, oversampling and ROSE);
- To explore and compare the results of two supervised classification techniques in order to identify which variables can significantly affect pedestrian and cyclist injury severity when involved in a motor vehicle crash.
4. Discussion
- Gender and age factors seem to play an important role in this type of VRU;
- Road markings are a risk factor considering pedestrian injury severity, especially for bigger cities;
- The luminosity of the road seems to be more important than weather conditions.
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Global Status Report on Road Safety 2018; License: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- European Commission. Pedestrians and Cyclists; Directorate General for Transport, February 2018; European Commission: Brussels, Belgium, 2018.
- European Commission. 2017 Road Safety Statistics: What Is behind the Figures? European Commission: Brussels, Belgium, 2018; pp. 1–4.
- ANSR. Annual Report 2017 (30 Days Victims)—National Authority of Road Safety; Portuguese National Authority for Road Safety: Lisbon, Portugal, 2017. (In Portuguese) [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Critical Issues in Transportation 2019; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48676-7. [Google Scholar]
- Monsere, C.; Wang, H.; Wang, Y.; Chen, C. Risk Factors for Pedestrians and Bicycle Crashes—Final Report—SPR 779; Oregon Department of Transportation: Salem, OR, USA, 2017.
- Liu, G.; Chen, S.; Zeng, Z.; Cui, H.; Fang, Y.; Gu, D.; Yin, Z.; Wang, Z. Risk factors for extremely serious road accidents: Results from national Road Accident Statistical Annual Report of China. PLoS ONE 2018, 13, e0201587. [Google Scholar] [CrossRef] [PubMed]
- SafetyNet Pedestrians & Cyclists. Available online: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/specialist/knowledge/pdf/pedestrians.pdf (accessed on 17 June 2018).
- Abellán, J.; López, G.; De Oña, J. Analysis of traffic accident severity using Decision Rules via decision trees. Expert Syst. Appl. 2013, 40, 6047–6054. [Google Scholar] [CrossRef]
- Ma, X.; Chen, S.; Chen, F. Multivariate space-time modeling of crash frequencies by injury severity levels. Anal. Methods Accid. Res. 2017, 15, 29–40. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, Y.; Li, Q.; Nie, K.; Tu, W.; Liang, S.; Wang, Z.; Yue, Y.; Li, Q.; Nie, K.; et al. Analyzing Risk Factors for Fatality in Urban Traffic Crashes: A Case Study of Wuhan, China. Sustainability 2017, 9, 897. [Google Scholar] [CrossRef]
- Ferreira, S.; Amorim, M.; Couto, A. Risk factors affecting injury severity determined by the MAIS score. Traffic Inj. Prev. 2017, 18, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Delen, D.; Tomak, L.; Topuz, K.; Eryarsoy, E. Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods. J. Transp. Health 2017, 4, 118–131. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C.; Abdel-Aty, M. Analysis of accident injury-severities using a correlated random parameters ordered probit approach with time variant covariates. Anal. Methods Accid. Res. 2018, 18, 57–68. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C.; Mannering, F.L. Analysis of vehicle accident-injury severities: A comparison of segment- versus accident-based latent class ordered probit models with class-probability functions. Anal. Methods Accid. Res. 2018, 18, 15–32. [Google Scholar] [CrossRef]
- Fountas, G.; Anastasopoulos, P.C. Analysis of accident injury-severity outcomes: The zero-inflated hierarchical ordered probit model with correlated disturbances. Anal. Methods Accid. Res. 2018, 20, 30–45. [Google Scholar] [CrossRef]
- Ramachandiran, V.M.; Babu, P.N.K.; Manikandan, R. Prediction of Road Accidents Severity using various algorithms. Int. J. Pure Appl. Math. 2018, 119, 16663–16669. [Google Scholar]
- Duddu, V.R.; Kukkapalli, V.M.; Pulugurtha, S.S. Crash risk factors associated with injury severity of teen drivers. IATSS Res. 2018, 43, 37–43. [Google Scholar] [CrossRef]
- Senserrick, T.; Boufous, S.; de Rome, L.; Ivers, R.; Stevenson, M. Detailed Analysis of Pedestrian Casualty Collisions in Victoria, Australia. Traffic Inj. Prev. 2014, 15, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Pour-Rouholamin, M.; Zhou, H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J. Saf. Res. 2016, 57, 9–17. [Google Scholar] [CrossRef]
- Xin, C.; Guo, R.; Wang, Z.; Lu, Q.; Lin, P.S. The effects of neighborhood characteristics and the built environment on pedestrian injury severity: A random parameters generalized ordered probability model with heterogeneity in means and variances. Anal. Methods Accid. Res. 2017, 16, 117–132. [Google Scholar] [CrossRef]
- Kim, M.; Kho, S.Y.; Kim, D.K. Hierarchical ordered model for injury severity of pedestrian crashes in South Korea. J. Saf. Res. 2017, 61, 33–40. [Google Scholar] [CrossRef]
- Uddin, M.; Ahmed, F. Pedestrian Injury Severity Analysis in Motor Vehicle Crashes in Ohio. Safety 2018, 4, 20. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev. 2019, 122, 318–324. [Google Scholar] [CrossRef]
- Kaplan, S.; Vavatsoulas, K.; Prato, C.G. Aggravating and mitigating factors associated with cyclist injury severity in Denmark. J. Saf. Res. 2014, 50, 75–82. [Google Scholar] [CrossRef]
- Chen, P.; Shen, Q. Built environment effects on cyclist injury severity in automobile-involved bicycle crashes. Accid. Anal. Prev. 2016, 86, 239–246. [Google Scholar] [CrossRef]
- Wall, S.P.; Lee, D.C.; Frangos, S.G.; Sethi, M.; Heyer, J.H.; Ayoung-chee, P.; DiMaggio, C.J. The Effect of Sharrows, Painted Bicycle Lanes and Physically Protected Paths on the Severity of Bicycle Injuries Caused by Motor Vehicles. Safety 2016, 2, 26. [Google Scholar] [CrossRef]
- Behnood, A.; Mannering, F. Determinants of bicyclist injury severities in bicycle-vehicle crashes: A random parameters approach with heterogeneity in means and variances. Anal. Methods Accid. Res. 2017, 16, 35–47. [Google Scholar] [CrossRef]
- Prati, G.; Pietrantoni, L.; Fraboni, F. Using data mining techniques to predict the severity of bicycle crashes. Accid. Anal. Prev. 2017, 101, 44–54. [Google Scholar] [CrossRef]
- Useche, S.; Montoro, L.; Alonso, F.; Oviedo-Trespalacios, O. Infrastructural and Human Factors Affecting Safety Outcomes of Cyclists. Sustainability 2018, 10, 299. [Google Scholar] [CrossRef]
- Zahabi, S.; Strauss, J.; Manaugh, K.; Miranda-Moreno, L. Estimating Potential Effect of Speed Limits, Built Environment, and Other Factors on Severity of Pedestrian and Cyclist Injuries in Crashes. Transp. Res. Rec. J. Transp. Res. Board 2011, 2247, 81–90. [Google Scholar] [CrossRef]
- Torrão, G.; Coelho, M.; Rouphail, N. Modeling the impact of subject and opponent vehicles on crash severity in two-vehicle collisions. Transp. Res. Rec. 2014, 2432, 53–64. [Google Scholar] [CrossRef]
- Amoh-Gyimah, R.; Saberi, M.; Sarvi, M. Macroscopic modeling of pedestrian and bicycle crashes: A cross-comparison of estimation methods. Accid. Anal. Prev. 2016, 93, 147–159. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, H. Factor comparison of passenger-vehicle to vulnerable road user crashes in Beijing, China. Int. J. Crashworthiness 2017, 22, 260–270. [Google Scholar] [CrossRef]
- Heydari, S.; Fu, L.; Miranda-Moreno, L.F.; Jopseph, L. Using a flexible multivariate latent class approach to model correlated outcomes: A joint analysis of pedestrian and cyclist injuries. Anal. Methods Accid. Res. 2017, 13, 16–27. [Google Scholar] [CrossRef]
- Vilaça, M.; Silva, N.; Coelho, M.C. Statistical Analysis of the Occurrence and Severity of Crashes Involving Vulnerable Road Users. Transp. Res. Procedia 2017, 27, 1113–1120. [Google Scholar] [CrossRef]
- Vilaça, M.; Macedo, E.; Tafidis, P.; Coelho, M. Frequency and severity of crashes involving vulnerable road users—An integrated spatial and temporal analysis. In Proceedings of the Annual Meeting Transportation Research Board, Washignton, DC, USA, 12–16 January 2018; pp. 1–17. [Google Scholar]
- Salon, D.; McIntyre, A. Determinants of pedestrian and bicyclist crash severity by party at fault in San Francisco, CA. Accid. Anal. Prev. 2018, 110, 149–160. [Google Scholar] [CrossRef]
- Ouni, F.; Belloumi, M. Spatio-temporal pattern of vulnerable road user’s collisions hot spots and related risk factors for injury severity in Tunisia. Transp. Res. Part F Traffic Psychol. Behav. 2018, 56, 477–495. [Google Scholar] [CrossRef]
- Weast, R. Temporal factors in motor-vehicle crash deaths: Ten years later. J. Saf. Res. 2018, 65, 125–131. [Google Scholar] [CrossRef]
- Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory and Applications; Series in Machine Perception and Artificial Intelligence; World Scientific: Singapore, 2014; Volume 81, ISBN 978-981-4590-07-5. [Google Scholar]
- Dovom, H.Z.; Saffarzadeh, M.; Dovom, M.Z.; Nadimi, N. An Analysis of Pedestrian Fatal Accident Severity Using a Binary logistic regression Model. ITE 2012, 82, 38. [Google Scholar]
- Moudon, A.V.; Lin, L.; Jiao, J.; Hurvitz, P.; Reeves, P. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington. Accid. Anal. Prev. 2011, 43, 11–24. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies—With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer Science + Business Media: New York, NY, USA, 2015; ISBN 978-3319194240. [Google Scholar]
- Abdulhafedh, A. Incorporating the Multinomial logistic regression in Vehicle Crash Severity Modeling: A Detailed Overview. J. Transp. Technol. 2017, 7, 279–303. [Google Scholar] [CrossRef]
- Al-Radaideh, Q.A.; Daoud, E.J. Data mining methods for traffic accident severity prediction. Int. J. Neural Netw. Adv. Appl. 2018, 5, 1–12. [Google Scholar]
- Japkowicz, N. Assessment Metrics for Imbalanced Learning. In Imbalanced Learning; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 187–206. [Google Scholar]
- López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [Google Scholar] [CrossRef]
- More, A. Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv 2016, arXiv:1608.06048. [Google Scholar]
- Burnaev, E.; Erofeev, P.; Papanov, A. Influence of Resampling on Accuracy of Imbalanced Classification. In Proceedings of the Eighth International Conference on Machine Vision (ICMV 2015), Barcelona, Spain, 19–20 November 2015. [Google Scholar]
- Tantithamthavorn, C.; Hassan, A.E.; Matsumoto, K. The Impact of Class Rebalancing Techniques on the Performance and Interpretation of Defect Prediction Models. IEEE Trans. Softw. Eng. 2018, 1–20. [Google Scholar] [CrossRef]
- Crone, S.F.; Finlay, S. Instance sampling in credit scoring: An empirical study of sample size and balancing. Int. J. Forecast. 2012, 28, 224–238. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. Knowl. Data Eng. IEE Trans. 2009, 21, 1263–1284. [Google Scholar] [Green Version]
- Pei, X.; Sze, N.N.; Wong, S.C.; Yao, D. Bootstrap resampling approach to disaggregate analysis of road crashes in Hong Kong. Accid. Anal. Prev. 2016, 95, 512–520. [Google Scholar] [CrossRef]
- Mujalli, R.O.; López, G.; Garach, L. Bayes classifiers for imbalanced traffic accidents datasets. Accid. Anal. Prev. 2016, 88, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Mussone, L.; Bassani, M.; Masci, P. Analysis of factors affecting the severity of crashes in urban road intersections. Accid. Anal. Prev. 2017, 103, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Taamneh, M.; Alkheder, S.; Taamneh, S. Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. J. Transp. Saf. Secur. 2017, 9, 146–166. [Google Scholar] [CrossRef]
- Jiang, L.; Xie, Y. Modelling highly unbalanced crash injury severity data by ensemble methods and global sensitivity analysis. In Proceedings of the Transportation Research Board 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2008. [Google Scholar]
- Lunardon, N.; Menardi, G.; Torelli, N. ROSE: Random Oversampling Examples. ROSE-Package, Version 0.0-3, License GPL-2, CRAN. 2014. Available online: https://rdrr.io/cran/ROSE/man/ROSE-package.html (accessed on 1 March 2019).
- Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A Package for Binary Imbalanced Learning. R J. 2014, 6, 79–89. [Google Scholar] [CrossRef]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Liu, H.; Gegov, A.; Cocea, M. Unified Framework for Control of Machine Learning Tasks towards Effective and Efficient Processing of Big Data. In Data Science and Big Data: An Environment of Computational Intelligence; Springer: Cham, Switzerland, 2017; pp. 123–140. ISBN 978-3-319-53473-2. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef]
- Williams, G. Data Mining with Rattle and R; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9889-7. [Google Scholar]
- Ryza, S.; Laserson, U.; Owen, S.; Wills, J. Advanced Analytics with Spark: Patterns from Learning from Data at Scale; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2017; ISBN 9781491972946. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 3rd ed.; A Wiley-Interscience Publication: Hoboken, NJ, USA, 2013; ISBN 0-471-35632-8. [Google Scholar]
- INE. Censos 2011 Resultados Definitivos—Portugal; Portuguese Statistics Institute: Lisbon, Portugal, 2011. (In Portuguese)
Variable | Code | Description | Aveiro | Porto | Lisbon | |||
---|---|---|---|---|---|---|---|---|
NSI | SI | NSI | SI | NSI | SI | |||
Gender | 0 | Male | 245 | 25 | 942 | 44 | 2072 | 178 |
1 | Female | 218 | 19 | 1062 | 27 | 2097 | 119 | |
Age | 1 | 11 years old | 22 | 4 | 89 | 3 | 213 | 11 |
2 | 12–17 years old | 29 | 2 | 146 | 4 | 291 | 14 | |
3 | 18–24 years old | 75 | 4 | 235 | 7 | 544 | 28 | |
4 | 25–49 years old | 140 | 15 | 572 | 11 | 1298 | 87 | |
5 | 50–65 years old | 102 | 8 | 472 | 14 | 820 | 51 | |
6 | >65 years old | 95 | 11 | 490 | 32 | 1003 | 106 | |
Month | 1 | January | 38 | 4 | 159 | 6 | 340 | 30 |
2 | February | 33 | 3 | 150 | 8 | 327 | 28 | |
3 | March | 36 | 3 | 172 | 4 | 325 | 25 | |
4 | April | 35 | 3 | 133 | 7 | 328 | 10 | |
5 | May | 35 | 6 | 162 | 4 | 391 | 30 | |
6 | June | 38 | 3 | 165 | 4 | 326 | 20 | |
7 | July | 37 | 2 | 187 | 3 | 344 | 24 | |
8 | August | 39 | 5 | 117 | 3 | 255 | 24 | |
9 | September | 37 | 5 | 201 | 9 | 387 | 21 | |
10 | October | 43 | 2 | 194 | 10 | 389 | 27 | |
11 | November | 55 | 3 | 182 | 5 | 387 | 29 | |
12 | December | 37 | 5 | 182 | 8 | 370 | 29 | |
Weekday | 1 | Sunday | 42 | 3 | 150 | 6 | 342 | 29 |
2 | Monday | 66 | 8 | 334 | 10 | 619 | 38 | |
3 | Tuesday | 80 | 3 | 297 | 12 | 671 | 44 | |
4 | Wednesday | 70 | 5 | 341 | 11 | 682 | 46 | |
5 | Thursday | 88 | 9 | 328 | 16 | 715 | 50 | |
6 | Friday | 65 | 10 | 342 | 9 | 723 | 56 | |
7 | Saturday | 52 | 6 | 212 | 7 | 417 | 34 | |
Time | 1 | 00:00–06:00 h | 22 | 4 | 67 | 4 | 222 | 22 |
2 | 07:00–10:00 h | 112 | 9 | 418 | 18 | 947 | 38 | |
3 | 11:00–15:00 h | 123 | 6 | 658 | 25 | 1256 | 91 | |
4 | 16:00–19:00 h | 163 | 18 | 637 | 14 | 1302 | 82 | |
5 | 20:00–23:00 h | 43 | 7 | 224 | 10 | 442 | 64 | |
Weather | 0 | Bad | 71 | 5 | 315 | 14 | 472 | 35 |
1 | Good | 392 | 39 | 1689 | 57 | 3697 | 262 | |
Luminosity | 1 | Daylight | 344 | 29 | 1519 | 50 | 3074 | 182 |
2 | Sun glare | 1 | 1 | 8 | 1 | 20 | 3 | |
3 | Dawn or dusk | 10 | 0 | 29 | 0 | 131 | 13 | |
4 | Night with road lights | 91 | 10 | 419 | 19 | 925 | 92 | |
5 | Night without road lights | 17 | 4 | 29 | 1 | 19 | 7 | |
Road Conditions | 1 | Good | 239 | 19 | 1306 | 34 | 1998 | 143 |
2 | Regular | 219 | 22 | 691 | 37 | 2080 | 151 | |
3 | Bad | 5 | 3 | 7 | 0 | 91 | 3 | |
Road Markings | 1 | Without | 183 | 16 | 382 | 7 | 1736 | 71 |
2 | Separating directions | 121 | 12 | 384 | 7 | 468 | 41 | |
3 | Separating directions and lanes | 159 | 16 | 1238 | 57 | 1965 | 185 |
Datasets | Total | NSI | SI | |||
---|---|---|---|---|---|---|
Aveiro | ||||||
Original | 249 | 258 | 222 | 241 | 27 | 17 |
Undersampling | 54 | 34 | 27 | 17 | 27 | 17 |
Oversampling | 444 | 482 | 222 | 241 | 222 | 241 |
ROSE | 249 | 258 | 126 | 131 | 123 | 127 |
Porto | ||||||
Original | 1849 | 226 | 1780 | 224 | 69 | 2 |
Undersampling | 138 | 4 | 69 | 2 | 69 | 2 |
Oversampling | 3560 | 448 | 1780 | 224 | 1780 | 224 |
ROSE | 1849 | 226 | 959 | 110 | 890 | 116 |
Lisbon | ||||||
Original | 3990 | 476 | 3713 | 456 | 277 | 20 |
Undersampling | 554 | 40 | 277 | 20 | 277 | 20 |
Oversampling | 7426 | 912 | 3713 | 456 | 3713 | 456 |
ROSE | 3990 | 476 | 2060 | 257 | 1930 | 219 |
Overall | ||||||
Original | 6088 | 960 | 5715 | 921 | 373 | 39 |
Undersampling | 746 | 78 | 373 | 39 | 373 | 39 |
Oversampling | 11430 | 1842 | 5715 | 921 | 5715 | 921 |
ROSE | 6088 | 960 | 3085 | 497 | 3003 | 463 |
Decision Tree | VRU | Original | Undersampling | Oversampling | ROSE |
Aveiro | 0.576 | 0.611 | 0.773 | 0.536 | |
0.505 | 0.667 | 0.839 | 0.635 | ||
Porto | 0.538 | 0.524 | 0.796 | 0.656 | |
0.547 | 0.500 1 | 0.962 | 0.974 | ||
Lisbon | 0.558 | 0.671 | 0.660 | 0.636 | |
0.574 | 0.571 | 0.931 | 0.547 | ||
Overall | 0.500 1 | 0.584 | 0.624 | 0.615 | |
0.614 | 0.552 | 0.894 | 0.672 | ||
Logistic Regression | VRU | Original | Undersampling | Oversampling | ROSE |
Aveiro | 0.547 | 0.580 | 0.652 | 0.540 | |
0.561 | 0.556 | 0.772 | 0.738 | ||
Porto | 0.652 | 0.512 | 0.684 | 0.692 | |
0.680 | - 2 | 0.861 | 0.814 | ||
Lisbon | 0.653 | 0.694 | 0.697 | 0.679 | |
0.578 | 0.510 | 0.692 | 0.623 | ||
Overall | 0.630 | 0.649 | 0.662 | 0.619 | |
0.539 | 0.667 | 0.631 | 0.584 |
Resampling Techniques | VRU | Aveiro | Porto | Lisbon | Overall |
---|---|---|---|---|---|
Original | Age (28) Month (20) Luminosity (14) | Road Markings (100) | Road Markings (93) Age (4) Road Conditions (3) | ||
Age (31) Gender (28) Month (18) | Age (100) | Age (42) Weekday (36) Month (19) | Weekday (47) Age (36) Time (16) | ||
Undersampling | Month (51) Luminosity (15) Time (10) | Age (36) Month (24) Road Markings (17) | Road Markings (25) Age (24) Month (14) | Month (33) Luminosity (19) Road Markings (19) | |
Month (46) Age (12) Time (12) Luminosity (12) Road Conditions (12) | Road Markings (77) Gender (8) Age (8) Month (8) | Road Conditions (30) Month (22) Age (17) | |||
Oversampling | Road Conditions (19) Month (17) Age (14) | Month (18) Road Markings (14) Age (14) | Road Markings (42) Time (21) Age (19) | Age (43) Gender (30) Road Markings (20) | |
Weekday (18) Month (17) Age (14) Time (14) | Month (61) Time (17) Luminosity (9) | Weekday (22) Time (22) Month (15) | Age (21) Month (20) Weekday (19) | ||
ROSE | Gender (41) Road Markings (16) Time (11) | Road Markings (23) Gender (20) Age (18) | Road Markings (42) Luminosity (36) Age (11) | Gender (28) Road Markings (25) Age (20) | |
Gender (31) Age (17) Road Conditions (16) | Month (30) Gender (18) Time (17) | Luminosity (24) Weather (19) Weekday (13) Time (13) | Road Conditions (19) Age (18) Luminosity (16) |
Dataset | Resampling Technique | Gender | Age | Month | Weekday | Time | Weather | Luminosity | Road Conditions | Road Markings |
---|---|---|---|---|---|---|---|---|---|---|
Aveiro | Original | 0.4115 * | ||||||||
Undersampling | 2.0020 * | |||||||||
Oversampling | 0.9262 ** | 0.2262 ** | 0.4465 ** | |||||||
ROSE | −0.8828 *** | 0.2323 * | 0.4263 ** | |||||||
Porto | Original | −0.8858 *** | 1.0265 *** | |||||||
Undersampling | 0.3958 ** | 0.8862 * | ||||||||
Oversampling | −0.9121 *** | 0.2355 *** | −0.0515 ** | −0.2357 *** | −0.2142 * | 0.1561 *** | 0.7761 *** | 0.6581 *** | ||
ROSE | −0.5685 *** | 0.1181 *** | −0.1227 ** | 0.1065 *** | 0.4855 *** | 0.4051 *** | ||||
Lisbon | Original | −0.3684 ** | 0.2090 *** | 0.4627 * | 0.1456 ** | 0.5239 *** | ||||
Undersampling | −0.3795 * | 0.2079 ** | 0.2833 ** | |||||||
Oversampling | −0.4822 *** | 0.2601 *** | −0.0256 *** | 0.1009 *** | 0.1849 ** | 0.1653 *** | 0.3945 *** | |||
ROSE | −0.4406 *** | 0.1959 *** | 0.1158 *** | 0.2369 ** | 0.1072 *** | 0.3403 *** | ||||
Overall | Original | −0.5991 *** | 0.1812 *** | 0.16196 *** | 0.3441 *** | 0.4130 *** | ||||
Undersampling | 0.2438 *** | 0.2932 * | 0.3413 *** | |||||||
Oversampling | −0.5041 *** | 0.1970 *** | −0.0166 ** | 0.0609 *** | 0.2412 *** | 0.1573 *** | 0.2865 *** | 0.3219 *** | ||
ROSE | −0.3931 *** | 0.1325 *** | −0.020 ** | 0.0655 ** | 0.0804 *** | 0.1874 *** | 0.2808 *** |
Dataset | Resampling Technique | Gender | Age | Month | Weekday | Time | Weather | Luminosity | Road Conditions | Road Markings |
---|---|---|---|---|---|---|---|---|---|---|
Aveiro | Original | 1.0863 ** | ||||||||
Undersampling | ||||||||||
Oversampling | −1.0377 *** | 1.0251 *** | 0.5456 *** | 0.7132 *** | −0.4234 *** | 1.3226 *** | 0.3846 ** | |||
ROSE | −0.9348 *** | 0.1494 * | 1.2172 *** | |||||||
Porto | Original | |||||||||
Undersampling | ||||||||||
Oversampling | −0.9513 *** | −0.6974 *** | −2.0614 *** | |||||||
ROSE | −0.9218 *** | 5.7643 ** | −0.3771 * | |||||||
Lisbon | Original | |||||||||
Undersampling | 0.4457 * | |||||||||
Oversampling | 0.0626 ** | 0.0342 ** | 0.1109 * | |||||||
ROSE | 0.0748 ** | 0.1847 ** | ||||||||
Overall | Original | |||||||||
Undersampling | ||||||||||
Oversampling | −0.3509 ** | 0.2066 *** | 0.0669 ** | 0.2386 *** | 0.6649 *** | |||||
ROSE | 0.1407 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilaça, M.; Macedo, E.; Coelho, M.C. A Rare Event Modelling Approach to Assess Injury Severity Risk of Vulnerable Road Users. Safety 2019, 5, 29. https://doi.org/10.3390/safety5020029
Vilaça M, Macedo E, Coelho MC. A Rare Event Modelling Approach to Assess Injury Severity Risk of Vulnerable Road Users. Safety. 2019; 5(2):29. https://doi.org/10.3390/safety5020029
Chicago/Turabian StyleVilaça, Mariana, Eloísa Macedo, and Margarida C. Coelho. 2019. "A Rare Event Modelling Approach to Assess Injury Severity Risk of Vulnerable Road Users" Safety 5, no. 2: 29. https://doi.org/10.3390/safety5020029
APA StyleVilaça, M., Macedo, E., & Coelho, M. C. (2019). A Rare Event Modelling Approach to Assess Injury Severity Risk of Vulnerable Road Users. Safety, 5(2), 29. https://doi.org/10.3390/safety5020029