Application of Nanomaterials in Personal Respiratory Protection Equipment: A Literature Review
Abstract
:1. Introduction
2. Method
3. Results
4. N95 Respirators
5. Nanoparticles Application to Increase the Filtration Performance of PM2.5
6. Antibacterial Nanoparticles
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nouri, J.; Azadeh, A.; Fam, I.M. The evaluation of safety behaviors in a gas treatment company in Iran. J. Loss Prev. Process Ind. 2008, 21, 319–325. [Google Scholar] [CrossRef]
- Fam, I.M.; Azadeh, A.; Faridan, M.; Mahjub, H. Safety behaviors assessment in process industry: A case study in gas refinery. J. Chin. Inst. Ind. Eng. 2008, 25, 298–305. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Cohen, A.J.; Ross Anderson, H.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health Part A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.T.; Ghio, A.J. Vascular effects of ambient pollutant particles and metals. Curr. Vasc. Pharmacol. 2006, 4, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Künzli, N.; Tager, I. Air pollution: From lung to heart. Swiss Med. Wkly. 2005, 135, 697–702. [Google Scholar] [PubMed]
- Thron, R.W. Direct and indirect exposure to air pollution. Otolaryngol. Head Neck Surg. 1996, 114, 281–285. [Google Scholar] [CrossRef]
- Geiser, M.; Schurch, S.; Gehr, P. Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J. Appl. Physiol. 2003, 94, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Crosera, M.; Bovenzi, M.; Maina, G.; Adami, G.; Zanette, C.; Florio, C.; Filon Larese, F. Nanoparticle dermal absorption and toxicity: A review of the literature. Int. Arch. Occup. Environ. Health 2009, 82, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, M.; Adl, J.; Shahtaheri, S.; Kakooe, H.; Forushani, A.R.; Rashidi, A.; Keypoor, J. Determining Service Life of Respirator Cartridges Using a Simple and Practical Method: Case Study in a Car Manufacturing Industry. Iran Occup. Health 2012, 8, 9–17. [Google Scholar]
- Grinshpun, S.A.; Haruta, H.; Eninger, R.M.; Reponen, T.; McKay, R.T.; Lee, S.-A. Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: Two pathways for particle penetration. J. Occup. Environ. Hyg. 2009, 6, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, M.; Adl, J.; Shahtaheri, S.; Kakooe, H.; Forushani, A.R.; Rashidi, A.; Ghorbanali, A. Assessment of Organic Vapor-Respirator Cartridge Efficiency based on the EN 14387: 2004 Standard. J. Sch. Public Health Inst. Public Health Res. 2011, 9, 1–10. [Google Scholar]
- Ma, M.C.; Jiang, Z.H. (Eds.) Application of nanometer materials in the design of clothing. In Applied Mechanics and Materials; Trans Tech Publications: Zurich, Switzerland, 2013. [Google Scholar]
- Prasad, K.; Jha, A.K.; Kulkarni, A. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res. Lett. 2007, 2, 248. [Google Scholar] [CrossRef]
- McCullough, N.; Brosseau, L.; Vesley, D. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity. Ann. Occup. Hyg. 1997, 41, 677–690. [Google Scholar] [CrossRef]
- Berger, S.; Kramer, M.; Nagar, H.; Finkelstein, A.; Frimmerman, A.; Miller, H. Effect of surgical mask position on bacterial contamination of the operative field. J. Hosp. Infect. 1993, 23, 51–54. [Google Scholar] [CrossRef]
- Qian, Y.; Willeke, K.; Grinshpun, S.A.; Donnelly, J.; Coffey, C.C. Performance of N95 respirators: Filtration efficiency for airborne microbial and inert particles. Am. Ind. Hyg. Assoc. J. 1998, 59, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Lewin, M. Handbook of Fiber Science and Technology Volume 2: Chemical Processing of Fibers and Fabrics—Functional Finishes; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Lee, S.-A.; Grinshpun, S.A.; Reponen, T. Respiratory performance offered by N95 respirators and surgical masks: Human subject evaluation with NaCl aerosol representing bacterial and viral particle size range. Ann. Occup. Hyg. 2008, 52, 177–185. [Google Scholar] [PubMed]
- Patel, R.B.; Skaria, S.D.; Mansour, M.M.; Smaldone, G.C. Respiratory source control using a surgical mask: An in vitro study. J. Occup. Environ. Hyg. 2016, 13, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Yao, M. Airflow resistance and bio-filtering performance of carbon nanotube filters and current facepiece respirators. J. Aerosol Sci. 2015, 79, 61–71. [Google Scholar] [CrossRef]
- Skaria, S.D.; Smaldone, G.C. Respiratory source control using surgical masks with nanofiber media. Ann. Occup. Hyg. 2014, 58, 771–781. [Google Scholar] [PubMed]
- Radonovich, L.J.; Cheng, J.; Shenal, B.V.; Hodgson, M.; Bender, B.S. Respirator tolerance in health care workers. JAMA 2009, 301, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.S.; Knapp, C.; Eagan, A.E.; Radonovich, L.J., Jr. Health care workers’ views about respirator use and features that should be included in the next generation of respirators. Am. J. Infect. Control 2010, 38, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Ogunremi, T.; Astrakianakis, G.; Bryce, E.; Gervais, R.; Gravel, D.; Johnston, L.; Leduc, S.; Roth, V.; Taylor, G.; et al. Impact of the 2009 influenza A (H1N1) pandemic on Canadian health care workers: A survey on vaccination, illness, absenteeism, and personal protective equipment. Am. J. Infect. Control 2012, 40, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Gosch, M.E.; Shaffer, R.E.; Eagan, A.E.; Roberge, R.J.; Davey, V.J.; Radonovich, L.J., Jr. B95: A new respirator for health care personnel. Am. J. Infect. Control 2013, 41, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tokura, H.; Guo, Y.; Wong, A.; Wong, T.; Chung, J.; Newton, E. Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. Int. Arch. Occup. Environ. Health 2005, 78, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Loeb, M.; Dafoe, N.; Mahony, J.; John, M.; Sarabia, A.; Glavin, V.; Webby, R.; Smieja, M.; Earn, D.J.; Chong, S.; et al. Surgical mask vs. N95 respirator for preventing influenza among health care workers: A randomized trial. JAMA 2009, 302, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Shenal, B.V.; Radonovich, L.J., Jr.; Cheng, J.; Hodgson, M.; Bender, B.S. Discomfort and exertion associated with prolonged wear of respiratory protection in a health care setting. J. Occup. Environ. Hyg. 2012, 9, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Leung, P.; Yao, L.; Song, Q.; Newton, E. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 2006, 62, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W. Health effects of particulate air pollution. Ann. Epidemiol. 2009, 19, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Yoon, K.; Hsiao, B.S.; Chu, B. Functional nanofibers for environmental applications. J. Mater. Chem. 2008, 18, 5326–5334. [Google Scholar] [CrossRef]
- Peters, A.; Dockery, D.W.; Muller, J.E.; Mittleman, M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001, 103, 2810–2815. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, A.; Zhuang, Z.; BerryAnn, R. Respiratory protection against bioaerosols: Literature review and research needs. Am. J. Infect. Control 2004, 32, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-J.; Fridrikh, S.V.; Rutledge, G.C.; Kaplan, D.L. Electrospinning Bombyx mori silk with poly (ethylene oxide). Biomacromolecules 2002, 3, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gong, Y. Design of polymeric nanofiber gauze mask to prevent inhaling PM2.5 particles from haze pollution. J. Chem. 2015, 2015, 460392. [Google Scholar] [CrossRef]
- Lim, S.; Yoon, S.-H.; Shimizu, Y.; Jung, H.; Mochida, I. Surface control of activated carbon fiber by growth of carbon nanofiber. Langmuir 2004, 20, 5559–5563. [Google Scholar] [CrossRef] [PubMed]
- Schlögl, R.; Abd, H.S.B.B.O.A. Nanocarbon-Activated Carbon Composite. U.S. Patent 20,090,220,767A1, 3 September 2009. [Google Scholar]
- Moyer, E.S.; Smith, S.J.; Wood, G.O. Carbon tetrachloride replacement compounds for organic vapor air-purifying respirator cartridge and activated carbon testing—A review. AIHAJ Am. Ind. Hyg. Assoc. 2001, 62, 494–507. [Google Scholar] [CrossRef]
- Sone, H.; Fugetsu, B.; Tsukada, T.; Endo, M. Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes. Talanta 2008, 74, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, M.; Shahtaheri, S.J.; Adl, J.; Rashidi, A.; Clark, K.; Sauvain, J.-J.; Riediker, M. Emission of carbon nanofiber (CNF) from CNF-containing composite adsorbents. J. Occup. Environ. Hyg. 2012, 9, D130–D135. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, M.; Adl, J.; Shahtaheri, S.J.; Rashidi, A.; Ghorbanali, A.; Kakooe, H.; Forushani, A.R.; Ganjali, M.R. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge. Iran. J. Environ. Health Sci. Eng. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuervo, M.R.; Asedegbega-Nieto, E.; Díaz, E.; Vega, A.; Ordóñez, S.; Castillejos-López, E.; Rodríguez-Ramos, I. Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. J. Chromatogr. A 2008, 1188, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Rodriguez, N.M.; Chambers, A.; Baker, R.T.K. Catalytic engineering of carbon nanostructures. Langmuir 1995, 11, 3862–3866. [Google Scholar] [CrossRef]
- Fresta, M.; Puglisi, G.; Giammona, G.; Cavallaro, G.; Micali, N.; Furneri, P.M. Pefloxacine mesilate-and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: Characterization of the colloidal drug carrier formulation. J. Pharm. Sci. 1995, 84, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Borkow, G.; Zhou, S.S.; Page, T.; Gabbay, J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE 2010, 5, e11295. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, T.; Hayes, M.M.; Cao, Z.; Tonda, R.; Johnson, K.; Wright, D.C.; Brisker, J.; Baker, J.R., Jr. A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J. Infect. Dis. 1999, 180, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679–6686. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Prak, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Maurer, L.; Meyer, J. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ. Sci. Nano 2016, 3, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Stevens, S.E. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Slawson, R.M.; Trevors, J.T.; Lee, H. Silver accumulation and resistance in Pseudomonas stutzeri. Arch. Microbiol. 1992, 158, 398–404. [Google Scholar] [CrossRef]
- Sondi, I.; Goia, D.V.; Matijević, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 2003, 260, 75–81. [Google Scholar] [CrossRef]
- Schierholz, J.; Lucas, L.; Rump, A.; Pulverer, G. Efficacy of silver-coated medical devices. J. Hosp. Infect. 1998, 40, 257–262. [Google Scholar] [CrossRef]
- Schierholz, J.M.; Beuth, J.; Pulverer, G. Silver coating of medical devices for catheter-associated infections? Am. J. Med. 1999, 107, 101. [Google Scholar] [PubMed]
- Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, M.; Masse, A.; Tobin, E.; Cannas, M. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials 2002, 23, 887–892. [Google Scholar] [CrossRef]
- Aymonier, C.; Schlotterbeck, U.; Antonietti, L.; Zacharias, P.; Thomann, R.; Tiller, J.C.; Mecking, S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 2002, 3018–3019. [Google Scholar] [CrossRef] [Green Version]
- Simončič, B.; Klemenčič, D. Preparation and performance of silver as an antimicrobial agent for textiles: A review. Text. Res. J. 2016, 86, 210–223. [Google Scholar] [CrossRef]
- Spadaro, J.; Berger, T.; Barranco, S.; Chapin, S.; Becker, R. Antibacterial effects of silver electrodes with weak direct current. Antimicrob. Agents Chemother. 1974, 6, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.K.; Nallathambi, G. Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration. Fibers Polym. 2015, 16, 1327–1335. [Google Scholar] [CrossRef]
- Pooley, F. Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 1982, 296, 642–643. [Google Scholar] [CrossRef]
- Li, Y.; Wong, T.; Chung Guo, Y.; Hu, J.; Guan, Y.; Yao, L.; Song, Q.W.; Newton, E. In vivo protective performance of N95 respirator and surgical facemask. Am. J. Ind. Med. 2006, 49, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Crosera, M.; Prodi, A.; Mauro, M.; Pelin, M.; Florio, C.; Bellomo, F.; Adami, G.; Apostoli, P.; De Palma, G.; Bovenzi, M.; et al. Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int. J. Environ. Res. Public Health 2015, 12, 9282–9297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filon, F.L.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Filon, F.L.; Crosera, M.; Timeus, E.; Adami, G.; Bovenzi, M.; Ponti, J.; Maina, G. Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol. In Vitro 2013, 27, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Bianco, C.; Adami, G.; Crosera, M.; Larese, F.; Casarin, S.; Castagnoli, C.; Stella, M.; Maina, G. Silver percutaneous absorption after exposure to silver nanoparticles: A comparison study of three human skin graft samples used for clinical applications. Burns 2014, 40, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Sharma, A.K.; Loeschner, K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Larese, F.F.; D’Agostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009, 255, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Gawkrodger, D.J. Occupational allergic contact dermatitis to silver and colophonium in a jeweler. Am. J. Contact Dermat. 2002, 13, 74. [Google Scholar] [PubMed]
No. | Author (year) | Application | Protection Provided | Applied Nanomaterials | Results in Brief |
---|---|---|---|---|---|
1 | Y. Li (2006) | Surgical masks | Against infectious agents | Mixture of silver nitrate, titanium dioxide, Ca2+, Mg2+ and oleophobol C | Nanoparticle-coated fabrics show promising result for producing protective clothes that reduce transmission of infectious agents. |
2 | X. Li (2015) | Gauze masks | Prevent inhaling the PM2.5 (particulate Matter 2.5) fine particles | Polysulfone-based nanofber | Nano-fiber masks efficiently filter out the PM2.5 particles along with maintaining an acceptable breathability. |
3 | M. Jahangiri (2012) | Cartridge | Against organic vapors | AC/CNF (Activated Carbon and Carbon nanofiber) composite | The results showed that nanofibers can be used effectively in the development of PPE against organic solvents. |
4 | AK. Selvam (2015) | Protective mask filter | Anti-bactericidal filter | PAN (Polyacrylonitrile) nanofibres with Ag nanoparticles | Anti-bactericidal activity and also 99% BFE (Bacterial Filtration Efficiency) is suitable in production of protective mask. |
5 | M. Jahangiri (2013) | Respirator cartridge | Organic-vapor | Activated carbon and carbon nanofiber (AC/CNF) | The results showed this composite has lower weight and higher adsorption capacities and is a very effective alternative adsorbent for respirator cartridges. |
6 | A. Rengasamy (2015) | Facepiece respirators | Bioaerosol | Three types of carbon nanotube (CNT) filters+ different densities SWNTs (single-walled carbon nanotube) onto round polypropylene filters | Significant improvements were observed in filtration performance of higher CNT loaded filters, also higher biological aerosol particle filtration efficiencies than the total aerosol particles. |
7 | SD. Skaria (2014) | Polydisperse aerosols | Face mask with nanofiber filter media | Low airflow resistance and effortless exhalation through mask filter made by nanofiber filter media, making it suitable for surgical mask production. | |
8 | TK. Lin | Water filters, masks, protective clothes and wound dressing | Inhibition of bacterial growth | Silver nanoparticle-loaded activated carbon | Results showed proper disinfectant properties and using the hydro-gel formula provided a large surface area. |
9 | Y. Li | Nano-masks | Water repellency and antibacterial function | Coating with antibacterial nano-materials | Nano-masks can yield extra protection in stopping capillary diffusion and antibacterial activities. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasinia, M.; Karimie, S.; Haghighat, M.; Mohammadfam, I. Application of Nanomaterials in Personal Respiratory Protection Equipment: A Literature Review. Safety 2018, 4, 47. https://doi.org/10.3390/safety4040047
Abbasinia M, Karimie S, Haghighat M, Mohammadfam I. Application of Nanomaterials in Personal Respiratory Protection Equipment: A Literature Review. Safety. 2018; 4(4):47. https://doi.org/10.3390/safety4040047
Chicago/Turabian StyleAbbasinia, Marzieh, Safoura Karimie, Mojtaba Haghighat, and Iraj Mohammadfam. 2018. "Application of Nanomaterials in Personal Respiratory Protection Equipment: A Literature Review" Safety 4, no. 4: 47. https://doi.org/10.3390/safety4040047
APA StyleAbbasinia, M., Karimie, S., Haghighat, M., & Mohammadfam, I. (2018). Application of Nanomaterials in Personal Respiratory Protection Equipment: A Literature Review. Safety, 4(4), 47. https://doi.org/10.3390/safety4040047