Forensic Gender Determination by Using Mandibular Morphometric Indices an Iranian Population: A Panoramic Radiographic Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Eligibility Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Antegonial Angle and Antegonial Depth
4.2. Bicondylar Breadth
4.3. Bigonial Breadth
4.4. Condylar Height
4.5. Coronoid Height
4.6. Gonial Angle
4.7. Superior and Inferior Borders of Mental Foramen
4.8. Maximum and Minimum Ramus Width
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saini, V.; Srivastava, R.; Rai, R.K.; Shamal, S.N.; Singh, T.B.; Tripathi, S.K. Mandibular Ramus: An Indicator for Sex in Fragmentary Mandible. J. Forensic Sci. 2010, 56, S13–S16. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, L. Application of osteology to forensic medicine. Clin. Anat. 2002, 15, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Cunha, E.; Pinheiro, J. Forensic Anthropology and Medicine: Complementary Sciences from Recovery to Cause of Death. Int. J. Osteoarchaeol. 2007, 17, 434–436. [Google Scholar]
- Kimmerle, E.H.; Ross, A.; Slice, D. Sexual Dimorphism in America: Geometric Morphometric Analysis of the Craniofacial Region. J. Forensic Sci. 2008, 53, 54–57. [Google Scholar] [CrossRef]
- Franklin, D.; Freedman, L.; Milne, N. Sexual dimorphism and discriminant function sexing in indigenous South African crania. Homo 2004, 55, 213–228. [Google Scholar] [CrossRef]
- Baughan, B.; Demirjian, A. Sexual dimorphism in the growth of the cranium. Am. J. Phys. Anthr. 1978, 49, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Chovalopoulou, M.-E.; Valakos, E.; Nikita, E. Skeletal Sex Estimation Methods Based on the Athens Collection. Forensic Sci. 2022, 2, 715–724. [Google Scholar] [CrossRef]
- Đurić, M.; Rakočević, Z.; Đonić, D. The reliability of sex determination of skeletons from forensic context in the Balkans. Forensic Sci. Int. 2005, 147, 159–164. [Google Scholar] [CrossRef]
- Schulze, R.; Krummenauer, F.; Schalldach, F.; d’Hoedt, B. Precision and accuracy of measurements in digital panoramic radiography. Dentomaxillofac. Radiol. 2000, 29, 52–56. [Google Scholar] [CrossRef]
- Byahatti, S.M.; Samatha, K.; Ammanagi, R.A.; Tantradi, P.; Sarang, C.K.; Shivpuje, P. Sex determination by mandibular ramus: A digital orthopantomographic study. J. Forensic Dent. Sci. 2016, 8, 95–98. [Google Scholar] [CrossRef]
- Vaishali, M.R.; Ganapathy, K.; Srinivas, K. Evaluation of the Precision of Dimensional Measurements of the Mandible on Panoramic Radiographs. J. Indian Acad. Oral Med. Radiol. 2011, 23, S323–S327. [Google Scholar]
- Chole, R.H.; Patil, R.N.; Chole, S.B.; Gondivkar, S.; Gadbail, A.R.; Yuwanati, M.B. Association of Mandible Anatomy with Age, Gender, and Dental Status: A Radiographic Study. ISRN Radiol. 2013, 2013, 453763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, A.G.; Costa, C.; Silva, R.H.A.; Biazevic, M.G.H.; Michel-Crosato, E. Sex estimation: Anatomical references on panoramic radiographs using Machine Learning. Forensic Imaging 2020, 20, 200356. [Google Scholar] [CrossRef]
- Ceballos, F.; González, J.; Hernández, P.; Deana, N.; Alves, N. Frequency and Position of the Mental Foramen in Panoramic X-rays: Literature Review. Int. J. Morphol. 2017, 35, 1114–1120. [Google Scholar] [CrossRef]
- Gupta, V.; Pitti, P.; Sholapurkar, A. Panoramic radiographic study of mental foramen in selected dravidians of south Indian population: A hospital based study. J. Clin. Exp. Dent. 2015, 7, e451–e456. [Google Scholar] [CrossRef]
- Alhammadi, M.; Al-Mashraqi, A.; Alnami, R.; Ashqar, N.; Alamir, O.; Halboub, E.; Reda, R.; Testarelli, L.; Patil, S. Accuracy and Reproducibility of Facial Measurements of Digital Photographs and Wrapped Cone Beam Computed Tomography (CBCT) Photographs. Diagnostics 2021, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; Chowdhry, A.; Mehta, M. Sexual dimorphism and population variation in mandibular variables: A study on a contemporary Indian population. Anthr. Sci. 2022, 130, 59–70. [Google Scholar] [CrossRef]
- Rad, F.O.; Javanshir, B.; Nemati, S.; Khaksari, F.; Mansoori, R.; Ranjzad, H.; Shokri, A. Evaluation of sexual dimorphism with mandibular parameters by digital panoramic radiography. Open Dent. J. 2020, 14, 172–177. [Google Scholar]
- Chalkoo, A.H.; Maqbool, S.; Wani, B.A. Radiographic evaluation of sexual dimorphism in mandibular ramus: A digital orthopantomography study. Int. J. Appl. Dent. Sci. 2019, 5, 163–166. [Google Scholar]
- Dabaghi, A.; Bagheri, A. Mandibular Ramus Sexual Dimorphism Using Panoramic Radiography. Avicenna J. Dent. Res. 2020, 12, 97–102. [Google Scholar] [CrossRef]
- Apaydin, B.K.; Ozbey, H. Evaluation of Antegonial Angle and Antegonial Depth to Estimate Sex in a Prepubertal Turkish Population. Am. J. Forensic Med. Pathol. 2020, 41, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Dosi, T.; Vahanwala, S.; Gupta, D. Assessment of the Effect of Dimensions of the Mandibular Ramus and Mental Foramen on Age and Gender Using Digital Panoramic Radiographs: A Retrospective Study. Contemp. Clin. Dent. 2018, 9, 343–348. [Google Scholar] [CrossRef]
- Iliescu, A.R.; Capitaneanu, C.V.; Hürter, D.; Fieuws, S.; de Tobel, J.; Thevissen, P.W. Quantifying the potential of morphological parameters for human dental identification: Part 3—Selecting the strongest skeletal identifiers in the mandible. Int. J. Leg. Med. 2022, 136, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, C.; Ha, E.-G.; Choi, Y.J.; Han, S.-S. A fully deep learning model for the automatic identification of cephalometric landmarks. Imaging Sci. Dent. 2021, 51, 299. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 3 November 2022).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Van der Loo, M.P.J.; de Jonge, E. Data Validation Infrastructure for R. J. Stat. Softw. 2021, 97, 1–31. [Google Scholar] [CrossRef]
- Ulusoy, A.T.; Ozkara, E. Radiographic evaluation of the mandible to predict age and sex in subadults. Acta Odontol. Scand. 2022, 80, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Vengal, M.; Pai, K.; Abhishek, K. Remodeling of the antegonial angle region in the human mandible: A panoramic radiographic cross-sectional study. Med. Oral Patol. Oral Cir. Bucal 2010, 15, e802–e807. [Google Scholar] [CrossRef]
- Tozoğlu, Ü.; Çakur, B. Evaluation of the morphological changes in the mandible for dentate and totally edentate elderly population using cone-beam computed tomography. Surg. Radiol. Anat. 2014, 36, 643–649. [Google Scholar] [CrossRef]
- Dutra, V.; Yang, J.; Devlin, H.; Susin, C. Mandibular bone remodelling in adults: Evaluation of panoramic radiographs. Dentomaxillofacial Radiol. 2004, 33, 323–328. [Google Scholar] [CrossRef]
- El-Shafey, M.O.; El-Sherbiny, M.O.; Sherif, R.N.; El-Atta, H.M. Sexual dimorphism of mandibular ramus in an Egyptian sample: A radiographic study. Med. J. Cairo Univ. 2019, 87, 645–651. [Google Scholar]
- Kharoshah, M.A.A.; Almadani, O.; Ghaleb, S.S.; Zaki, M.K.; Fattah, Y.A.A. Sexual dimorphism of the mandible in a modern Egyptian population. J. Forensic Leg. Med. 2010, 17, 213–215. [Google Scholar] [CrossRef]
- Leversha, J.; McKeough, G.; Myrteza, A.; Skjellrup-Wakefiled, H.; Welsh, J.; Sholapurkar, A. Age and gender correlation of gonial angle, ramus height and bigonial width in dentate subjects in a dental school in Far North Queensland. J. Clin. Exp. Dent. 2016, 8, e49–e54. [Google Scholar] [CrossRef]
- Jyothsna, M.; Ranjith, K.; Sarat, G.; Vajra, M.; Anuradha, C. Determination of gender using condylar height and coronoid height-an orthopantomographic study. J. Ann. Essences Dent. 2017, 9, 5a–9a. [Google Scholar]
- Sandeepa, N.C.; Ganem, A.A.; Alqhtani, W.A. Mandibular indices for gender prediction: A retrospective radiographic study in Saudi population. J. Dent. Oral Health 2017, 7, 2. [Google Scholar]
- Saleh, A.-T.N.; El Beshlawy, D.M. Mandibular Ramus and Gonial Angle Measurements as Predictors of Sexand Age in an Egyptian Population Sample: A Digital Panoramic Study. J. Forensic Res. 2015, 6, 5. [Google Scholar]
- Rani, A.; Kanjani, V.; Kanjani, D.; Annigeri, R.G. Morphometric assessment of mental foramen for gender prediction using panoramic radiographs in the West Bengal population-A retrospective digital study. J. Adv. Clin. Res. Insights 2019, 6, 63–66. [Google Scholar] [CrossRef]
- Amorim, M.M.; Borini, C.B.; Lopes, S.L.P.D.C.; Neto, F.H.; Caria, P.H.F. Morphological Description of Mandibular Canal in Panoramic Radiographs of Brazilian Subjects: Association Between Anatomic Characteristic and Clinical Procedures. Int. J. Morphol. 2009, 27, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Mahima, V.; Patil, K.; Srikanth, H. Mental foramen for gender determination: A panoramic radiographic study. Med.-Leg. Update 2009, 9, 33–35. [Google Scholar]
Right | ||||||
Multiple model | Univariate model | Best model | ||||
Index | OR (95% CI) | p value | OR (95% CI) | p value | OR (95% CI) | p value |
AGA | 0.98 (0.89, 1.07) | 0.624 | 0.91 (0.86, 0.95) | <0.001 *** | ||
AGD | 1.33 (0.75, 2.34) | 0.323 | 1.66 (1.26, 2.22) | <0.001 *** | 1.37 (0.95, 2.01) | 0.092 |
BCW | 1.04 (1, 1.09) | 0.077 | 1.08 (1.06, 1.11) | <0.001 *** | 1.06 (1.03, 1.1) | <0.001 |
BGW | 1.04 (0.98, 1.1) | 0.183 | 1.09 (1.06, 1.12) | <0.001 *** | ||
CH | 1.07 (1.03, 1.14) | 0.003 | 1.26 (1.19, 1.33) | <0.001 *** | 1.08 (1.03, 1.14) | 0.002 |
CRH | 1.17 (1.07, 1.28) | 0.001 | 1.29 (1.21, 1.37) | <0.001 *** | 1.16 (1.08, 1.26) | <0.001 |
GA | 1.03 (0.97, 1.1) | 0.328 | 0.97 (0.94, 1.01) | 0.135 | ||
IBMF | 0.59 (0.34, 1.01) | 0.059 | 1.84 (1.54, 2.23) | <0.001 *** | 0.58 (0.33, 0.99) | 0.049 |
SBMF | 2.31 (1.36, 4.04) | 0.002 | 2.02 (1.68, 2.47) | <0.001 *** | 2.36 (1.39, 4.1) | 0.002 |
MaxRW | 1.01 (0.83, 1.18) | 0.941 | 1.22 (1.13, 1.32) | <0.001 *** | ||
MinRW | 0.84 (0.67, 1.05) | 0.129 | 1.19 (1.09, 1.3) | <0.001 *** | 0.86 (0.75, 0.97) | 0.021 |
Left | ||||||
Multiple model | Univariate model | Best model | ||||
AGA | 1.01 (0.91, 1.12) | 0.789 | 0.89 (0.84, 0.94) | <0.001 *** | ||
AGD | 1.66 (0.87, 3.16) | 0.122 | 1.78 (1.34, 2.41) | <0.001 *** | 1.55 (1.02, 2.42) | 0.047 |
BCW | 1.04 (0.99, 1.09) | 0.112 | 1.08 (1.06, 1.11) | <0.001 *** | 1.04 (1, 1.08) | 0.031 |
BGW | 1.01 (0.95, 1.06) | 0.843 | 1.09 (1.06, 1.12) | <0.001 *** | ||
CH | 1.31 (1.18, 1.48) | <0.001 | 1.41 (1.31, 1.53) | <0.001 *** | 1.31 (1.18, 1.46) | <0.001 |
CRH | 1.07 (0.96, 1.19) | 0.216 | 1.29 (1.22, 1.38) | <0.001 *** | 1.08 (0.98, 1.19) | 0.135 |
GA | 1.05 (0.99, 1.13) | 0.13 | 0.97 (0.94, 1.01) | 0.128 | 1.05 (0.99, 1.12) | 0.108 |
IBMF | 0.88 (0.49, 1.55) | 0.664 | 1.98 (1.63, 2.43) | <0.001 *** | ||
SBMF | 1.51 (0.88, 2.69) | 0.145 | 2.09 (1.73, 2.58) | <0.001 *** | 1.36 (1.06, 1.77) | 0.02 |
MaxRW | 1.01 (0.85, 1.18) | 0.898 | 1.22 (1.13, 1.32) | <0.001 *** | ||
MinRW | 0.87 (0.71, 1.04) | 0.141 | 1.18 (1.08, 1.28) | <0.001 *** | 0.88 (0.76, 1.01) | 0.084 |
Total (mean of left and right) | ||||||
Multiple model | Univariate model | Best model | ||||
AGA | 0.99 (0.89, 1.09) | 0.847 | 0.9 (0.85, 0.94) | <0.001 *** | - | - |
AGD | 1.4 (0.76, 2.56) | 0.281 | 1.73 (1.3, 2.33) | <0.001 *** | 1.37 (0.93, 2.06) | 0.122 |
BCW | 1.04 (1, 1.09) | 0.059 | 1.08 (1.06, 1.11) | <0.001 *** | 1.06 (1.03, 1.1) | <0.001 |
BGW | 1.03 (0.97, 1.09) | 0.382 | 1.09 (1.06, 1.12) | <0.001 *** | - | - |
CH | 1.16 (1.08, 1.27) | <0.001 | 1.34 (1.25, 1.43) | <0.001 *** | 1.17 (1.09, 1.27) | <0.001 |
CRH | 1.13 (1.02, 1.25) | 0.02 | 1.3 (1.22, 1.38) | <0.001 *** | 1.11 (1.02, 1.22) | 0.014 |
GA | 1.04 (0.97, 1.11) | 0.283 | 0.97 (0.94, 1.01) | 0.129 | - | - |
IBMF | 0.57 (0.29, 1.12) | 0.109 | 2.08 (1.71, 2.6) | <0.001 *** | 0.54 (0.27, 1.05) | 0.074 |
SBMF | 2.48 (1.29, 4.96) | 0.008 | 2.25 (1.83, 2.81) | <0.001 *** | 2.64 (1.38, 5.27) | 0.004 |
MaxRW | 1 (0.81, 1.19) | 0.985 | 1.24 (1.14, 1.35) | <0.001 *** | - | - |
MinRW | 0.84 (0.66, 1.05) | 0.134 | 1.2 (1.1, 1.31) | <0.001 *** | 0.84 (0.72, 0.96) | 0.013 |
Threshold | Specificity (%) | Sensitivity (%) | A | p Value | Direction | ||
---|---|---|---|---|---|---|---|
AGA | Right | 164.5 (159.5, 169.5) | 65.52 (21.379, 93.103) | 55.86 (23.448, 93.103) | 0.6207 | <0.001 *** | indirect |
Left | 163.5 (161.5, 168.5) | 78.62 (34.483, 89.655) | 46.21 (31.034, 85.517) | 0.6449 | <0.001 *** | indirect | |
Total | 163.75 (161.75, 168.25) | 73.1 (37.241, 90.345) | 50.34 (28.966, 82.759) | 0.6339 | <0.001 *** | indirect | |
AGD | Right | 1.05 (0.55, 2.25) | 59.31 (31.034, 93.103) | 64.14 (24.138, 86.914) | 0.62 | <0.001 *** | direct |
Left | 1.15 (0.75, 1.95) | 63.45 (44.138, 88.966) | 61.38 (30.345, 77.241) | 0.6316 | <0.001 *** | direct | |
Total | 1.08 (0.9, 1.925) | 62.07 (45.517, 88.966) | 63.45 (31.724, 77.931) | 0.6276 | <0.001 *** | direct | |
BCW | 185.2 (180.45, 191.9) | 71.72 (53.103, 89.655) | 71.03 (49.655, 87.586) | 0.747 | <0.001 *** | direct | |
BGW | 175.95 (172.9, 180.85) | 80 (66.897, 94.483) | 57.93 (39.31, 70.345) | 0.7171 | <0.001 *** | direct | |
CH | Right | 66.7 (66.3, 67.85) | 92.41 (86.897, 97.931) | 77.93 (68.966, 84.828) | 0.8751 | <0.001 *** | direct |
Left | 66.8 (64.85, 67.35) | 93.1 (84.828, 97.241) | 77.93 (69.655, 86.207) | 0.8822 | <0.001 *** | direct | |
Total | 66.72 (65.625, 67.125) | 93.79 (86.897, 97.241) | 77.93 (70.345, 85.517) | 0.8745 | <0.001 *** | direct | |
CRH | Right | 61.75 (60.45, 62.25) | 85.52 (76.552, 92.414) | 72.41 (62.759, 81.379) | 0.8202 | <0.001 *** | direct |
Left | 61.35 (60.45, 62.45) | 86.21 (78.621, 92.414) | 69.66 (61.379, 78.621) | 0.8238 | <0.001 *** | direct | |
Total | 61.38 (60.075, 62.275) | 86.21 (77.931, 92.414) | 72.41 (63.431, 80) | 0.8265 | <0.001 *** | direct | |
GA | Right | 119.5 (110.5, 124.5) | 64.83 (28.966, 96.552) | 50.34 (12.414, 82.759) | 0.5545 | 0.0542 | indirect |
Left | 118.5 (109.5, 122.5) | 66.9 (33.103, 97.931) | 48.97 (10.345, 79.31) | 0.556 | 0.0493 | indirect | |
Total | 118.75 (110.25, 123.75) | 66.21 (32.414, 97.931) | 50.34 (12.414, 80.69) | 0.5553 | 0.0516 | indirect | |
SBMF | Right | 15.35 (14.45, 15.55) | 89.66 (74.483, 95.172) | 57.24 (47.586, 71.724) | 0.7679 | <0.001 *** | direct |
Left | 14.45 (14.05, 15.65) | 66.9 (52.414, 90.345) | 78.62 (50.345, 89.655) | 0.7752 | <0.001 *** | direct | |
Total | 15.15 (13.925, 15.35) | 86.21 (56.552, 93.103) | 62.76 (52.414, 88.966) | 0.7871 | <0.001 *** | direct | |
IBMF | Right | 11.55 (11.15, 12.55) | 77.24 (65.517, 97.241) | 62.07 (35.862, 73.793) | 0.7278 | <0.001 *** | direct |
Left | 11.15 (10.95, 11.65) | 71.72 (60.69, 86.207) | 71.72 (55.172, 82.069) | 0.7502 | <0.001 *** | direct | |
Total | 11.72 (11.075, 11.975) | 84.14 (66.897, 91.034) | 60.69 (49.655, 77.241) | 0.7516 | <0.001 *** | direct | |
Max RW | Right | 35.05 (33.75, 36.45) | 67.59 (51.034, 83.448) | 71.72 (53.793, 85.517) | 0.7083 | <0.001 *** | direct |
Left | 35.2 (33.55, 36.95) | 66.9 (44.828, 89.655) | 68.97 (42.759, 88.276) | 0.7077 | <0.001 *** | direct | |
Total | 35.02 (33.3, 36.075) | 65.52 (48.276, 79.31) | 73.1 (57.241, 86.897) | 0.7144 | <0.001 *** | direct | |
Min RW | Right | 29.25 (26.85, 31.15) | 66.9 (33.793, 91.724) | 58.62 (29.655, 88.966) | 0.6352 | <0.001 *** | direct |
Left | 29.75 (26.45, 31.25) | 72.41 (29.655, 88.966) | 53.79 (33.103, 92.414) | 0.642 | <0.001 *** | direct | |
Total | 29.58 (26.725, 31.05) | 68.97 (32.414, 91.034) | 57.24 (31.724, 90.345) | 0.6416 | <0.001 *** | direct |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esfehani, M.; Ghasemi, M.; Katiraee, A.; Tofangchiha, M.; Alizadeh, A.; Taghavi-Damghani, F.; Testarelli, L.; Reda, R. Forensic Gender Determination by Using Mandibular Morphometric Indices an Iranian Population: A Panoramic Radiographic Cross-Sectional Study. J. Imaging 2023, 9, 40. https://doi.org/10.3390/jimaging9020040
Esfehani M, Ghasemi M, Katiraee A, Tofangchiha M, Alizadeh A, Taghavi-Damghani F, Testarelli L, Reda R. Forensic Gender Determination by Using Mandibular Morphometric Indices an Iranian Population: A Panoramic Radiographic Cross-Sectional Study. Journal of Imaging. 2023; 9(2):40. https://doi.org/10.3390/jimaging9020040
Chicago/Turabian StyleEsfehani, Mahsa, Melika Ghasemi, Amirhassan Katiraee, Maryam Tofangchiha, Ahad Alizadeh, Farnaz Taghavi-Damghani, Luca Testarelli, and Rodolfo Reda. 2023. "Forensic Gender Determination by Using Mandibular Morphometric Indices an Iranian Population: A Panoramic Radiographic Cross-Sectional Study" Journal of Imaging 9, no. 2: 40. https://doi.org/10.3390/jimaging9020040
APA StyleEsfehani, M., Ghasemi, M., Katiraee, A., Tofangchiha, M., Alizadeh, A., Taghavi-Damghani, F., Testarelli, L., & Reda, R. (2023). Forensic Gender Determination by Using Mandibular Morphometric Indices an Iranian Population: A Panoramic Radiographic Cross-Sectional Study. Journal of Imaging, 9(2), 40. https://doi.org/10.3390/jimaging9020040