Innovative Bacterial Colony Detection: Leveraging Multi-Feature Selection with the Improved Salp Swarm Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Processing
2.2. Segmentation
2.3. Feature Extraction
2.4. Feature Selection
2.4.1. Salp Swarm Algorithm
Algorithm 1 Pseudocode of the SSA algorithm | ||||
initialize the salps’ positions xi (i = 1, 2, …, n) | ||||
while (t < max iterations) | ||||
determine the fitness value of each salp | ||||
F = best salp ((search-agent) | ||||
Update the value of c parameter using Equation (2) | ||||
for every salp (xi) | ||||
if (i == 1) | ||||
Update leader position using Equation (1) | ||||
Else | ||||
Update follower position using Equation (3) | ||||
end if | ||||
end for | ||||
reposition the salps that go out of the search space based on the lower and upper bounds of problem variables | ||||
T = t + 1 | ||||
end while | ||||
return F |
2.4.2. Opposition-Based Learning
2.4.3. Local Search Algorithm
Algorithm 2 Pseudocode of the LSA algorithm | ||||
Temp = F (where F represents the current best solution at end of SSA’s current iteration) | ||||
Lt = 1 (Lt is a variable used to store the current iteration of local search algorithm) | ||||
while (Lt < maximum number of local iterations) | ||||
Randomly select three features from Temp | ||||
if selected-feature == 1 (1 means the feature is selected and 0 means not selected) | ||||
selected-feature = 0 | ||||
Else | ||||
selected-feature = 1 | ||||
end if | ||||
Calculate the fitness value of Temp | ||||
if f(Temp) < f(F) | ||||
F = Temp | ||||
end if | ||||
Lt = Lt + 1 | ||||
end while | ||||
return F |
2.4.4. Improved Salp Swarm Algorithm
3. Results and Discussion
3.1. Dataset
3.2. Parameter Setting
3.3. Results and Analysis
3.4. Comparison with Other Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Mokrani, S.; Nabti, E.H.; Cruz, C. Recent trends in microbial approaches for soil desalination. Appl. Sci. 2022, 12, 3586. [Google Scholar] [CrossRef]
- Benami, M.; Gillor, O.; Gross, A. Potential microbial hazards from graywater reuse and associated matrices: A review. Water Res. 2016, 106, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Joy, C.; Sundar, G.N.; Narmadha, D. AI driven automatic detection of bacterial contamination in water: A review. In Proceedings of the 5th International Conference on Intelligent Computing and Control Systems (ICICCS 2021), Madurai, India, 6–8 May 2021; pp. 1281–1285. [Google Scholar] [CrossRef]
- Nurliyana, M.R.; Sahdan, M.Z.; Wibowo, K.M.; Muslihati, A.; Saim, H.; Ahmad, S.A.; Sari, Y.; Mansor, Z. The detection method of Escherichia coli in water resources: A Review. J. Phys. Conf. Ser. 2018, 995, 012065. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Hosny, K.M.; Hemedan, A.A.; Darwish, M.M. Improved recognition of bacterial species using novel fractional-order orthogonal descriptors. Appl. Soft Comput. J. 2020, 95, 106504. [Google Scholar] [CrossRef]
- Panicker, R.O.; Kalmady, K.S.; Rajan, J.; Sabu, M.K. Automatic detection of Tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybern. Biomed. Eng. 2018, 38, 691–699. [Google Scholar] [CrossRef]
- Luo, J.; Ser, W.; Liu, A.; Yap, P.H.; Liedberg, B.; Rayatpisheh, S. Microorganism image classification with circle-based multi-region binarization and mutual-information-based feature selection. Biomed. Eng. Adv. 2021, 2, 100020. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Yi, R.; Aheto, J.H.; Osae, R.; Golly, M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 2019, 42, e13236. [Google Scholar] [CrossRef]
- Abdullah, H.-C.K.; Ali, S.; Khan, Z.; Hussain, A.; Athar, A. Computer vision based deep learning approach for the microscopic images. Water 2022, 22, 2219. [Google Scholar] [CrossRef]
- Wahid, M.F.; Ahmed, T.; Habib, M.A. Classification of microscopic images of bacteria using deep convolutional neural network. In Proceedings of the 2018 10th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2018; pp. 217–220. [Google Scholar] [CrossRef]
- Talo, M. An automated deep learning approach for bacterial image classification. arXiv 2019, arXiv:1912.08765. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Yanik, H.; Hilmi Kaloğlu, A.; Değirmenci, E. Detection of Escherichia Coli bacteria in water using deep learning. Teh. Glas. 2020, 14, 273–280. [Google Scholar] [CrossRef]
- Zieliński, B.; Plichta, A.; Misztal, K.; Spurek, P.; Brzychczy-Włoch, M.; Ochońska, D. Deep learning approach to bacterial colony classification. PLoS ONE 2017, 12, e0184554. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Singh, J. Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments for color object recognition. Opt. Laser Technol. 2018, 106, 234–250. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Li, Y.; Xia, Z.; Zhang, C. Quaternion polar harmonic Fourier moments for color images. Inf. Sci. 2018, 450, 141–156. [Google Scholar] [CrossRef]
- Chen, B.; Shu, H.; Coatrieux, G.; Chen, G.; Sun, X.; Coatrieux, J.L. Color Image Analysis by Quaternion-Type Moments. J. Math. Imaging Vis. 2015, 51, 124–144. [Google Scholar] [CrossRef]
- Huang, C.; Li, J.; Gao, G. Review of quaternion-based color image processing methods. Mathematics 2023, 11, 2056. [Google Scholar] [CrossRef]
- He, B.; Liu, J.; Yang, T.; Xiao, B.; Peng, Y. Quaternion fractional-order color orthogonal moment-based image representation and recognition. Eurasip J. Image Video Process. 2021, 2021, 17. [Google Scholar] [CrossRef]
- Hosny, K.M.; Darwish, M.M.; Eltoukhy, M.M. Novel multi-channel fractional-order radial harmonic fourier moments for color image analysis. IEEE Access 2020, 8, 40732–40743. [Google Scholar] [CrossRef]
- Tariq Al-Rayes, H.; Tariq Ibrahim, H.; Jalil Mazher, W.; Ucan, O.N.; Bayat, O. Feature selection using salp swarm algorithm for real biomedical datasets. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2017, 17, 13–20. [Google Scholar]
- Elaziz, M.A.; Moemen, Y.S.; Hassanien, A.E.; Xiong, S. Toxicity risks evaluation of unknown FDA biotransformed drugs based on a multi-objective feature selection approach. Appl. Soft Comput. 2020, 97, 105509. [Google Scholar] [CrossRef]
- Abd El Aziz, M.; Hassanien, A.E. An improved social spider optimization algorithm based on rough sets for solving minimum number attribute reduction problem. Neural Comput. Appl. 2018, 30, 2441–2452. [Google Scholar] [CrossRef]
- Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E. Chaotic multi-verse optimizer-based feature selection. Neural Comput. Appl. 2019, 31, 991–1006. [Google Scholar] [CrossRef]
- Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci. 2018, 8, 1521. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Zivkovic, M.; Stoean, C.; Chhabra, A.; Budimirovic, N.; Petrovic, A.; Bacanin, N. Novel improved salp swarm algorithm: An application for feature selection. Sensors 2022, 22, 1711. [Google Scholar] [CrossRef]
- Chaabane, S.B.; Belazi, A.; Kharbech, S.; Bouallegue, A. Improved salp swarm optimization algorithm: Application in feature weighting for blind modulation identification. Electronics 2021, 10, 2002. [Google Scholar] [CrossRef]
- Wang, S.; Jia, H.; Peng, X. Modified salp swarm algorithm based multilevel thresholding for color image segmentation. Math. Biosci. Eng. 2020, 17, 700–724. [Google Scholar] [CrossRef]
- Xie, X.; Xia, F.; Wu, Y.; Liu, S.; Yan, K.; Xu, H.; Ji, Z. A novel feature selection strategy based on salp swarm algorithm for plant disease detection. Plant Phenomics 2023, 5, 0039. [Google Scholar] [CrossRef]
- Qiu, C. A novel multi-swarm particle swarm optimization for feature selection. Genet. Program. Evolvable Mach. 2019, 20, 503–529. [Google Scholar] [CrossRef]
- Gu, S.; Cheng, R.; Jin, Y. Feature selection for high-dimensional classification using a competitive swarm optimizer. Soft Comput. 2018, 22, 811–822. [Google Scholar] [CrossRef]
- Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.M.; Mirjalili, S. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113122. [Google Scholar] [CrossRef]
- Rodrigues, F.K.T.; Miguel, P.; Luis, J. Petri Dishes Digital Images Dataset of E. coli, S. aureus and P. aeruginosa; Centre of Biotechnology and Fine Chemistry, Catholic University of Portugal: Lisboa, Portugal, 2022; Available online: https://figshare.com/articles/dataset/Dataset_bioengineering_17489364/20109377/2 (accessed on 17 July 2023).
- Nie, D.; Shank, E.A.; Jojic, V. A deep framework for bacterial image segmentation and classification. In Proceedings of the BCB ‘15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics, Atlanta, GA, USA, 9–12 September 2015; pp. 306–314. [Google Scholar] [CrossRef]
No. | Dataset | Number of Features | Number of Samples |
---|---|---|---|
1 | E. coli bacteria | 19 | 427 |
2 | S. aureus bacteria | 19 | 371 |
3 | P. aeruginosa bacteria | 19 | 458 |
Data | Accuracy | Number of Selected Feature | Fitness | ||||||
---|---|---|---|---|---|---|---|---|---|
PSO | SSA | ISSA | PSO | SSA | ISSA | PSO | SSA | ISSA | |
Data Test 1 | 67.686 | 72.489 | 72.925 | 5 | 5 | 4 | 0.323 | 0.274 | 0.270 |
Data Test 2 | 68.995 | 69.432 | 74.672 | 6 | 9 | 6 | 0.310 | 0.307 | 0.254 |
Data Test 3 | 66.375 | 68.995 | 72.489 | 5 | 8 | 6 | 0.335 | 0.311 | 0.276 |
Data Test 4 | 63.755 | 68.122 | 78.602 | 5 | 5 | 5 | 0.361 | 0.318 | 0.214 |
Data Test 5 | 68.558 | 72.489 | 72.925 | 6 | 6 | 6 | 0.314 | 0.275 | 0.271 |
Data Test 6 | 68.995 | 70.305 | 72.925 | 9 | 8 | 5 | 0.311 | 0.298 | 0.270 |
Data Test 7 | 65.502 | 69.868 | 71.179 | 5 | 7 | 5 | 0.344 | 0.301 | 0.287 |
Data Test 8 | 70.742 | 71.179 | 73.799 | 5 | 9 | 6 | 0.292 | 0.290 | 0.262 |
Data Test 9 | 69.868 | 68.122 | 72.925 | 7 | 9 | 5 | 0.301 | 0.320 | 0.270 |
Data Test 10 | 69.868 | 71.179 | 75.109 | 7 | 8 | 6 | 0.301 | 0.289 | 0.249 |
Average | 68.034 | 70.218 | 73.755 | 6 | 7 | 5 | 0.319 | 0.298 | 0.262 |
CNN | SIFT + KNN | SIFT + SVM | ISSA + KNN | |
---|---|---|---|---|
ACC (%) | 0.6210 | 0.4967 | 0.5400 | 0.7375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ihsan, A.; Muttaqin, K.; Fajri, R.; Mursyidah, M.; Fattah, I.M.R. Innovative Bacterial Colony Detection: Leveraging Multi-Feature Selection with the Improved Salp Swarm Algorithm. J. Imaging 2023, 9, 263. https://doi.org/10.3390/jimaging9120263
Ihsan A, Muttaqin K, Fajri R, Mursyidah M, Fattah IMR. Innovative Bacterial Colony Detection: Leveraging Multi-Feature Selection with the Improved Salp Swarm Algorithm. Journal of Imaging. 2023; 9(12):263. https://doi.org/10.3390/jimaging9120263
Chicago/Turabian StyleIhsan, Ahmad, Khairul Muttaqin, Rahmatul Fajri, Mursyidah Mursyidah, and Islam Md Rizwanul Fattah. 2023. "Innovative Bacterial Colony Detection: Leveraging Multi-Feature Selection with the Improved Salp Swarm Algorithm" Journal of Imaging 9, no. 12: 263. https://doi.org/10.3390/jimaging9120263
APA StyleIhsan, A., Muttaqin, K., Fajri, R., Mursyidah, M., & Fattah, I. M. R. (2023). Innovative Bacterial Colony Detection: Leveraging Multi-Feature Selection with the Improved Salp Swarm Algorithm. Journal of Imaging, 9(12), 263. https://doi.org/10.3390/jimaging9120263