An Automatic Pixel-Wise Multi-Penalty Approach to Image Restoration
Abstract
:1. Introduction
- We propose a variational pixel-wise regularization model tailored for image restoration and derived from the theoretical model developed in [18].
- We devise an algorithm capable of effectively and efficiently solving the proposed model.
- Through numerical experiments, we demonstrate that the proposed approach can proficiently eliminate noise and blur in smooth areas of an image while preserving its edges.
2. Materials and Methods
Algorithm 1 Input: , , , Output: |
|
3. Numerical Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, P.C.; Nagy, J.G.; O’leary, D.P. Deblurring Images: Matrices, Spectra, and Filtering; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Bredies, K.; Kunisch, K.; Pock, T. Total generalized variation. SIAM J. Imaging Sci. 2010, 3, 492–526. [Google Scholar] [CrossRef]
- Lu, S.; Pereverzev, S.V. Multi-parameter regularization and its numerical realization. Numer. Math. 2011, 118, 1–31. [Google Scholar] [CrossRef]
- Lu, S.; Pereverzev, S.V.; Shao, Y.; Tautenhahn, U. Discrepancy curves for multi-parameter regularization. J. Inverse-Ill-Posed Probl. 2010, 18, 655–676. [Google Scholar] [CrossRef]
- Belge, M.; Kilmer, M.E.; Miller, E.L. Efficient determination of multiple regularization parameters in a generalized L-curve framework. Inverse Probl. 2002, 18, 1161. [Google Scholar] [CrossRef]
- Brezinski, C.; Redivo-Zaglia, M.; Rodriguez, G.; Seatzu, S. Multi-parameter regularization techniques for ill-conditioned linear systems. Numer. Math. 2003, 94, 203–228. [Google Scholar] [CrossRef]
- Gazzola, S.; Reichel, L. A new framework for multi-parameter regularization. BIT Numer. Math. 2016, 56, 919–949. [Google Scholar] [CrossRef]
- Fornasier, M.; Naumova, V.; Pereverzyev, S.V. Parameter choice strategies for multipenalty regularization. SIAM J. Numer. Anal. 2014, 52, 1770–1794. [Google Scholar] [CrossRef]
- Kereta, Z.; Maly, J.; Naumova, V. Linear convergence and support recovery for non-convex multi-penalty regularization. arXiv 2019, arXiv:1908.02503v1. [Google Scholar]
- Naumova, V.; Peter, S. Minimization of multi-penalty functionals by alternating iterative thresholding and optimal parameter choices. Inverse Probl. 2014, 30, 125003. [Google Scholar] [CrossRef]
- Kereta, Ž.; Maly, J.; Naumova, V. Computational approaches to non-convex, sparsity-inducing multi-penalty regularization. Inverse Probl. 2021, 37, 055008. [Google Scholar] [CrossRef]
- Naumova, V.; Pereverzyev, S.V. Multi-penalty regularization with a component-wise penalization. Inverse Probl. 2013, 29, 075002. [Google Scholar] [CrossRef]
- Grasmair, M.; Klock, T.; Naumova, V. Adaptive multi-penalty regularization based on a generalized lasso path. Appl. Comput. Harmon. Anal. 2020, 49, 30–55. [Google Scholar] [CrossRef]
- Wang, W.; Lu, S.; Mao, H.; Cheng, J. Multi-parameter Tikhonov regularization with the ℓ0 sparsity constraint. Inverse Probl. 2013, 29, 065018. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Wu, C.; He, Z.; Zeng, T.; Jin, Q. Edge adaptive hybrid regularization model for image deblurring. Inverse Probl. 2022, 38, 065010. [Google Scholar] [CrossRef]
- Calatroni, L.; Lanza, A.; Pragliola, M.; Sgallari, F. A flexible space-variant anisotropic regularization for image restoration with automated parameter selection. SIAM J. Imaging Sci. 2019, 12, 1001–1037. [Google Scholar] [CrossRef]
- Bortolotti, V.; Landi, G.; Zama, F. Uniform multi-penalty regularization for linear ill-posed inverse problems. arXiv 2023, arXiv:2309.14163. [Google Scholar]
- Landi, G.; Loli Piccolomini, E. An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization. Numer. Algorithms 2012, 60, 169–188. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 1982, 20, 221–246. [Google Scholar] [CrossRef]
- Wang, S.; Rehman, A.; Wang, Z.; Ma, S.; Gao, W. SSIM-motivated rate-distortion optimization for video coding. IEEE Trans. Circuits Syst. Video Technol. 2011, 22, 516–529. [Google Scholar] [CrossRef]
- Tikhonov, A.N. On the solution of ill-posed problems and the method of regularization. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1963; Volume 151, pp. 501–504. [Google Scholar]
- Bonettini, S.; Prato, M. New convergence results for the scaled gradient projection method. Inverse Probl. 2015, 31, 095008. [Google Scholar] [CrossRef]
- di Serafino, D.; Landi, G.; Viola, M. Directional TGV-based image restoration under Poisson noise. J. Imaging 2021, 7, 99. [Google Scholar] [CrossRef]
Test Problem | Blur | |||
---|---|---|---|---|
galaxy | Out-of-focus | 0.5 × 10 | 0.25 × 10 | 0.1 × 10 |
Gaussian | 0.5 × 10 | 0.25 × 10 | 0.1 × 10 | |
mri | Out-of-focus | 1.5 × 10 | 1 × 10 | 0.5 × 10 |
Gaussian | 1.5 × 10 | 1 × 10 | 0.5 × 10 | |
leopard | Out-of-focus | 2.5 × 10 | 1.5 × 10 | 1. × 10 |
Gaussian | 2.5 × 10 | 0.1 × 10 | 0.5 × 10 | |
elaine | Out-of-focus | 1 × 10 | 1 × 10 | 1 × 10 |
Gaussian | 1 × 10 | 0.5 × 10 | 0.5 × 10 |
Blur | Model | RE | ISNR | MSSIM | Iters | ||
---|---|---|---|---|---|---|---|
Out-of-focus | TGV | 9.5953 × 10 | 7.2175 × 10 | 9.1418 × 10 | 226 | 3.0000 × 10 | |
TV | 1.0268 × 10 | 6.6291 × 10 | 8.7089 × 10 | 278 | 1.0000 × 10 | ||
TIKH | 1.3864 × 10 | 4.0211 × 10 | 8.3486 × 10 | 200 | 1.1000 × 10 | ||
MULTI | 8.2096 × 10 | 8.5722 × 10 | 9.3431 × 10 | 4(857) | 8.4116 × 10 | ||
TGV | 7.1519 × 10 | 9.7292 × 10 | 9.5015 × 10 | 302 | 7.5000 × 10 | ||
TV | 6.7196 × 10 | 1.0271 × 10 | 9.4744 × 10 | 259 | 5.0000 × 10 | ||
TIKH | 1.0943 × 10 | 6.0351 × 10 | 8.5965 × 10 | 200 | 3.0000 × 10 | ||
MULTI | 6.2660 × 10 | 1.0878 × 10 | 9.5843 × 10 | 7(1061) | 2.1493 × 10 | ||
TGV | 6.1028 × 10 | 1.1102 × 10 | 9.6274 × 10 | 323 | 1.0000 × 10 | ||
TV | 6.3776 × 10 | 1.0719 × 10 | 9.4229 × 10 | 303 | 1.0000 × 10 | ||
TIKH | 9.1181 × 10 | 7.6143 × 10 | 8.7665 × 10 | 200 | 1.0000 × 10 | ||
MULTI | 4.8955 × 10 | 1.3017 × 10 | 9.7150 × 10 | 9(1013) | 1.0491 × 10 | ||
Gaussian | TGV | 9.6150 × 10 | 4.5854 × 10 | 9.3328 × 10 | 198 | 2.5000 × 10 | |
TV | 8.8306 × 10 | 5.3246 × 10 | 9.2702 × 10 | 224 | 1.0000 × 10 | ||
TIKH | 1.0047 × 10 | 4.2032 × 10 | 9.0136 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 7.3686 × 10 | 6.8966 × 10 | 9.5114 × 10 | 4(699) | 8.3317 × 10 | ||
TGV | 8.5737 × 10 | 5.5019 × 10 | 9.4922 × 10 | 246 | 1.0000 × 10 | ||
TV | 7.7929 × 10 | 6.3312 × 10 | 9.3945 × 10 | 223 | 1.0000 × 10 | ||
TIKH | 8.4284 × 10 | 5.6503 × 10 | 9.2110 × 10 | 200 | 1.0000 × 10 | ||
MULTI | 6.0402 × 10 | 8.5442 × 10 | 9.6606 × 10 | 5(437) | 2.3968 × 10 | ||
TGV | 8.0734 × 10 | 6.0131 × 10 | 9.5637 × 10 | 280 | 2.5000 × 10 | ||
TV | 7.3912 × 10 | 6.7800 × 10 | 9.5186 × 10 | 214 | 1.0000 × 10 | ||
TIKH | 7.3620 × 10 | 6.8143 × 10 | 9.4621 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 5.7592 × 10 | 8.9471 × 10 | 9.7129 × 10 | 6(383) | 1.3106 × 10 |
Blur | Model | RE | ISNR | MSSIM | Iters | ||
---|---|---|---|---|---|---|---|
Out-of-focus | TGV | 8.6404 × 10 | 6.8531 × 10 | 8.3691 × 10 | 185 | 9.0000 × 10 | |
TV | 8.7052 × 10 | 6.7882 × 10 | 8.3805 × 10 | 212 | 5.0000 × 10 | ||
TIKH | 1.1476 × 10 | 4.3882 × 10 | 7.4472 × 10 | 200 | 1.0000 × 10 | ||
MULTI | 7.9139 × 10 | 7.6160 × 10 | 8.5073 × 10 | 4(1403) | 1.0098 × 10 | ||
TGV | 6.6508 × 10 | 9.0670 × 10 | 8.9245 × 10 | 180 | 2.5000 × 10 | ||
TV | 6.7875 × 10 | 8.8903 × 10 | 8.9272 × 10 | 232 | 1.0000 × 10 | ||
TIKH | 9.4934 × 10 | 5.9760 × 10 | 8.2645 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 5.4634 × 10 | 1.0775 × 10 | 9.1681 × 10 | 5(1456) | 1.7962 × 10 | ||
TGV | 5.3582 × 10 | 1.0936 × 10 | 9.2644 × 10 | 292 | 1.0000 × 10 | ||
TV | 6.2557 × 10 | 9.5905 × 10 | 8.9043 × 10 | 283 | 1.0000 × 10 | ||
TIKH | 7.8021 × 10 | 7.6717 × 10 | 8.2844 × 10 | 200 | 1.0000 × 10 | ||
MULTI | 4.6590 × 10 | 1.2150 × 10 | 9.4086 × 10 | 7(2483) | 5.8348 × 10 | ||
Gaussian | TGV | 7.4295 × 10 | 5.1521 × 10 | 8.8489 × 10 | 212 | 5.0000 × 10 | |
TV | 7.2950 × 10 | 5.3107 × 10 | 8.9032 × 10 | 214 | 5.0000 × 10 | ||
TIKH | 8.0602 × 10 | 4.4444 × 10 | 8.6998 × 10 | 200 | 7.5000 × 10 | ||
MULTI | 5.8445 × 10 | 7.2363 × 10 | 9.0902 × 10 | 4(650) | 9.6213 × 10 | ||
TGV | 6.3055 × 10 | 6.4566 × 10 | 9.1791 × 10 | 204 | 1.7500 × 10 | ||
TV | 6.1079 × 10 | 6.7331 × 10 | 9.3336 × 10 | 173 | 8.0000 × 10 | ||
TIKH | 6.7156 × 10 | 5.9092 × 10 | 9.1910 × 10 | 200 | 2.5000 × 10 | ||
MULTI | 4.6651 × 10 | 9.0737 × 10 | 9.4174 × 10 | 3(462) | 1.9888 × 10 | ||
TGV | 5.6288 × 10 | 7.4254 × 10 | 9.3696 × 10 | 222 | 1.0000 × 10 | ||
TV | 5.7295 × 10 | 7.2713 × 10 | 9.5196 × 10 | 155 | 5.0000 × 10 | ||
TIKH | 5.8965 × 10 | 7.0219 × 10 | 9.3828 × 10 | 200 | 7.5000 × 10 | ||
MULTI | 4.0354 × 10 | 1.0316 × 10 | 9.5758 × 10 | 4(1075) | 8.1542 × 10 |
Blur | Model | RE | ISNR | MSSIM | Iters | ||
---|---|---|---|---|---|---|---|
Out-of-focus | TGV | 1.6971 × 10 | 6.0610 × 10 | 7.5515 × 10 | 221 | 1.2500 × 10 | |
TV | 1.7345 × 10 | 5.8714 × 10 | 7.5114 × 10 | 276 | 5.0000 × 10 | ||
TIKH | 2.0715 × 10 | 4.3292 × 10 | 5.8731 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 1.6854 × 10 | 6.1211 × 10 | 7.4807 × 10 | 3(325) | 4.4885 × 10 | ||
TGV | 1.3874 × 10 | 7.7949 × 10 | 8.0408 × 10 | 250 | 3.0000 × 10 | ||
TV | 1.3360 × 10 | 8.1228 × 10 | 8.0757 × 10 | 371 | 1.0000 × 10 | ||
TIKH | 1.6784 × 10 | 6.1411 × 10 | 6.6137 × 10 | 200 | 1.5000 × 10 | ||
MULTI | 1.2572 × 10 | 8.6512 × 10 | 8.1534 × 10 | 10(9141) | 1.2627 × 10 | ||
TGV | 1.1579 × 10 | 9.3633 × 10 | 8.3657 × 10 | 353 | 7.5000 × 10 | ||
TV | 1.1976 × 10 | 9.0706 × 10 | 8.2166 × 10 | 411 | 2.5000 × 10 | ||
TIKH | 1.3891 × 10 | 7.7821 × 10 | 7.1537 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 1.1057 × 10 | 9.7643 × 10 | 8.1755 × 10 | 19(18607) | 2.7656 × 10 | ||
Gaussian | TGV | 1.6936 × 10 | 3.7549 × 10 | 7.7259 × 10 | 261 | 1.0000 × 10 | |
TV | 1.6515 × 10 | 3.9736 × 10 | 7.7529 × 10 | 314 | 4.0000 × 10 | ||
TIKH | 1.7150 × 10 | 3.6456 × 10 | 6.8620 × 10 | 200 | 2.5000 × 10 | ||
MULTI | 1.6298 × 10 | 4.0884 × 10 | 7.7539 × 10 | 3(241) | 4.5599 × 10 | ||
TGV | 1.5058 × 10 | 4.7470 × 10 | 8.0108 × 10 | 339 | 1.0000 × 10 | ||
TV | 1.4747 × 10 | 4.9279 × 10 | 8.0458 × 10 | 281 | 5.0000 × 10 | ||
TIKH | 1.5280 × 10 | 4.6194 × 10 | 7.2992 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 1.4385 × 10 | 5.1440 × 10 | 8.0937 × 10 | 4(375) | 1.0924 × 10 | ||
TGV | 1.4220 × 10 | 5.2400 × 10 | 8.1688 × 10 | 500 | 1.0000 × 10 | ||
TV | 1.4489 × 10 | 5.0775 × 10 | 8.0509 × 10 | 309 | 1.0000 × 10 | ||
TIKH | 1.4156 × 10 | 5.2795 × 10 | 7.7128 × 10 | 200 | 1.0000 × 10 | ||
MULTI | 1.3314 × 10 | 5.8118 × 10 | 8.2728 × 10 | 5(513) | 3.6611 × 10 |
Blur | Model | RE | ISNR | MSSIM | Iters | ||
---|---|---|---|---|---|---|---|
Out-of-focus | TGV | 5.2937 × 10 | 4.2620 × 10 | 7.0502 × 10 | 117 | 2.5000 × 10 | |
TV | 5.3390 × 10 | 4.1879 × 10 | 7.0068 × 10 | 79 | 2.5000 × 10 | ||
TIKH | 6.7772 × 10 | 2.1162 × 10 | 6.4440 × 10 | 200 | 2.5000 × 10 | ||
MULTI | 5.2967 × 10 | 4.2571 × 10 | 7.0941 × 10 | 6(789) | 9.2884 × 10 | ||
TGV | 4.7522 × 10 | 4.8898 × 10 | 7.2933 × 10 | 111 | 1.0000 × 10 | ||
TV | 4.7884 × 10 | 4.8238 × 10 | 7.3036 × 10 | 86 | 5.0000 × 10 | ||
TIKH | 5.6612 × 10 | 3.3695 × 10 | 6.9381 × 10 | 200 | 1.0000 × 10 | ||
MULTI | 4.6498 × 10 | 5.0791 × 10 | 7.3630 × 10 | 4(426) | 2.6005 × 10 | ||
TGV | 4.4345 × 10 | 5.4451 × 10 | 7.4655 × 10 | 123 | 2.0000 × 10 | ||
TV | 4.6262 × 10 | 5.0776 × 10 | 7.4001 × 10 | 80 | 5.0000 × 10 | ||
TIKH | 5.0669 × 10 | 4.2873 × 10 | 7.3213 × 10 | 200 | 5.0000 × 10 | ||
MULTI | 4.3129 × 10 | 5.6867 × 10 | 7.5707 × 10 | 4(201) | 5.5324 × 10 >> | ||
Gaussian | TGV | 4.8945 × 10 | 2.5540 × 10 | 7.2618 × 10 | 98 | 1.5000 × 10 | |
TV | 4.8877 × 10 | 2.5660 × 10 | 7.2428 × 10 | 78 | 2.5000 × 10 | ||
TIKH | 6.0527 × 10 | 7.0909 × 10 | 7.1350 × 10 | 200 | 3.0000 × 10 | ||
MULTI | 4.7693 × 10 | 2.7791 × 10 | 7.3403 × 10 | 5(537) | 8.6631 × 10 | ||
TGV | 4.5610 × 10 | 2.6121 × 10 | 7.4550 × 10 | 100 | 1.0000 × 10 | ||
TV | 4.5903 × 10 | 2.5566 × 10 | 7.4522 × 10 | 75 | 8.0000 × 10 | ||
TIKH | 4.9219 × 10 | 1.9508 × 10 | 7.3947 × 10 | 200 | 7.5000 × 10 | ||
MULTI | 4.4332 × 10 | 2.8590 × 10 | 7.5318 × 10 | 3(135) | 1.2558 × 10 | ||
TGV | 4.3903 × 10 | 2.8586 × 10 | 7.5594 × 10 | 112 | 2.5000 × 10 | ||
TV | 4.4699 × 10 | 2.7025 × 10 | 7.5904 × 10 | 68 | 2.5000 × 10 | ||
TIKH | 4.6376 × 10 | 2.3826 × 10 | 7.5546 × 10 | 200 | 2.5000 × 10 | ||
MULTI | 4.2950 × 10 | 3.0493 × 10 | 7.6433 × 10 | 2(56) | 2.9785 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bortolotti, V.; Landi, G.; Zama, F. An Automatic Pixel-Wise Multi-Penalty Approach to Image Restoration. J. Imaging 2023, 9, 249. https://doi.org/10.3390/jimaging9110249
Bortolotti V, Landi G, Zama F. An Automatic Pixel-Wise Multi-Penalty Approach to Image Restoration. Journal of Imaging. 2023; 9(11):249. https://doi.org/10.3390/jimaging9110249
Chicago/Turabian StyleBortolotti, Villiam, Germana Landi, and Fabiana Zama. 2023. "An Automatic Pixel-Wise Multi-Penalty Approach to Image Restoration" Journal of Imaging 9, no. 11: 249. https://doi.org/10.3390/jimaging9110249
APA StyleBortolotti, V., Landi, G., & Zama, F. (2023). An Automatic Pixel-Wise Multi-Penalty Approach to Image Restoration. Journal of Imaging, 9(11), 249. https://doi.org/10.3390/jimaging9110249