Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Preprocessing
2.3. Model
2.4. Training
2.5. Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Captur, G.; Manisty, C.; Moon, J.C. Cardiac MRI evaluation of myocardial disease. Heart 2016, 102, 1429–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogaert, J.D.S.; Taylor, A.M.; Muthurangu, V. Clinical Cardiac MRI; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012. [Google Scholar]
- Brenes, J.C.; Doltra, A.; Prat, S. Cardiac magnetic resonance imaging in the evaluation of patients with hypertrophic cardiomyopathy. Glob. Cardiol. Sci. Pract. 2018, 2018, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Hu, H.; Xu, X.; Song, E. Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming. Acad. Radiol. 2012, 19, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.; Yezzi, A.; Wells, W.; Tempany, C.; Tucker, D.; Fan, A.; Grimson, W.E.; Willsky, A. A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 2003, 22, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Grosgeorge, D.; Petitjean, C.; Dacher, J.-N.; Ruan, S. Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 2013, 117, 1027–1035. [Google Scholar] [CrossRef]
- Zotti, C.; Luo, Z.; Lalande, A.; Humbert, O.; Jodoin, P.-M. Novel Deep Convolution Neural Network Applied to MRI Cardiac Segmentation. arXiv 2017, arXiv:1705.08943. [Google Scholar]
- Zhuang, X.; Hawkes, D.; Crum, W.; Boubertakh, R.; Uribe, S.; Atkinson, D.; Batchelor, P.; Schaeffter, T.; Razavi, R.; Hill, D. Robust registration between cardiac MRI images and atlas for segmentation propagation. In Proceedings of the Medical Imaging 2008: Image Processing, San Diego, CA, USA, 16–21 February 2008; Reinhardt, J.M., Pluim, J., Eds.; SPIE Proceedings: San Diego, CA, USA, 2008; Volume 6914. [Google Scholar]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Avendi, M.R.; Kheradvar, A.; Jafarkhani, H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 2016, 30, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Avendi, M.R.; Kheradvar, A.; Jafarkhani, H. Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn. Reson. Med. 2017, 78, 2439–2448. [Google Scholar] [CrossRef] [Green Version]
- Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.A.; de Marvao, A.; Dawes, T.; O’Regan, D.P.; et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation. IEEE Trans. Med. Imaging 2018, 37, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, W.; Wang, K.; Ye, C.; Luo, G. An Automatic Cardiac Segmentation Framework based on Multi-sequence MR Image. arXiv 2019, arXiv:1909.05488. [Google Scholar]
- Shi, J.; Ye, Y.; Zhu, D.; Su, L.; Huang, Y.; Huang, J. Automatic segmentation of cardiac magnetic resonance images based on multi-input fusion network. Comput. Methods Programs Biomed. 2021, 209, 106323. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, M.; Zhang, J.; Liu, H. Cardiac MRI segmentation with focal loss constrained deep residual networks. Phys. Med. Biol. 2021, 66. [Google Scholar] [CrossRef]
- Hann, E.; Popescu, I.A.; Zhang, Q.; Gonzales, R.A.; Barutçu, A.; Neubauer, S.; Ferreira, V.M.; Piechnik, S.K. Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping. Med. Image Anal. 2021, 71, 102029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, W.; Shen, W.; Li, N.; Chen, Y.; Li, S.; Chen, B.; Guo, S.; Wang, Y. Automatic segmentation of the cardiac MR images based on nested fully convolutional dense network with dilated convolution. Biomed. Signal Processing Control. 2021, 68. [Google Scholar] [CrossRef]
- Chan, R.H.; Maron, B.J.; Olivotto, I.; Pencina, M.J.; Assenza, G.E.; Haas, T.; Lesser, J.R.; Gruner, C.; Crean, A.M.; Rakowski, H.; et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 2014, 130, 484–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, M.S.; Rowin, E.J.; Wessler, B.S.; Mooney, P.J.; Fatima, A.; Patel, P.; Koethe, B.C.; Romashko, M.; Link, M.S.; Maron, B.J. Enhanced American College of Cardiology/American Heart Association Strategy for Prevention of Sudden Cardiac Death in High-Risk Patients With Hypertrophic Cardiomyopathy. JAMA Cardiol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020, 142, e533–e557. [Google Scholar] [CrossRef]
- Philbrick, K.A.; Weston, A.D.; Akkus, Z.; Kline, T.L.; Korfiatis, P.; Sakinis, T.; Kostandy, P.; Boonrod, A.; Zeinoddini, A.; Takahashi, N.; et al. RIL-Contour: A Medical Imaging Dataset Annotation Tool for and with Deep Learning. J. Digit. Imaging 2019, 32, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Mason, D. SU-E-T-33: Pydicom: An Open Source DICOM Library. Med. Phys. 2011, 38, 3493. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Sorensen, T.J. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons; I kommission hos E. Munksgaard: Kobenhavn, Denmark, 1948. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; Devito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zou, K.H.; Warfield, S.K.; Bharatha, A.; Tempany, C.M.; Kaus, M.R.; Haker, S.J.; Wells, W.M., 3rd; Jolesz, F.A.; Kikinis, R. Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 2004, 11, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Vogel-Claussen, J.; Rochitte, C.E.; Wu, K.C.; Kamel, I.R.; Foo, T.K.; Lima, J.A.; Bluemke, D.A. Delayed enhancement MR imaging: Utility in myocardial assessment. Radiographics 2006, 26, 795–810. [Google Scholar] [CrossRef]
- Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Bohl, S.; Wassmuth, R.; Abdel-Aty, H.; Rudolph, A.; Messroghli, D.; Dietz, R.; Schulz-Menger, J. Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease. Int. J. Cardiovasc. Imaging 2008, 24, 597–607. [Google Scholar] [CrossRef]
- Kim, H.W.; Rehwald, W.G.; Jenista, E.R.; Wendell, D.C.; Filev, P.; van Assche, L.; Jensen, C.J.; Parker, M.A.; Chen, E.-l.; Crowley, A.L.C. Dark-blood delayed enhancement cardiac magnetic resonance of myocardial infarction. JACC Cardiovasc. Imaging 2018, 11, 1758–1769. [Google Scholar] [CrossRef]
- Chen, C.; Qin, C.; Qiu, H.; Tarroni, G.; Duan, J.; Bai, W.; Rueckert, D. Deep Learning for Cardiac Image Segmentation: A Review. Front. Cardiovasc. Med. 2020, 7. [Google Scholar] [CrossRef]
- Baumgartner, C.; Koch, L.; Pollefeys, M.; Konukoglu, E. An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation. arXiv e-prints. 2017. Cornell Univ. (arXiv) 2017, 1. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, S.; Zhou, Y.; Yao, Y.; Li, J.; Shao, L. Motion-Attentive Transition for Zero-Shot Video Object Segmentation. arXiv 2020, 2003, 04253. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, T.; Yu, F.; Dai, J.; Konukoglu, E.; Van Gool, L. Exploring Cross-Image Pixel Contrast for Semantic Segmentation. arXiv 2021, arXiv:2101.11939. [Google Scholar]
- Zhou, T.; Li, X.; Feng, C.-M.; Li, J.; Shao, L. Group-Wise Learning for Weakly Supervised Semantic Segmentation. IEEE Trans. Image Processing 2022, 31, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan Vijay, K.A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv 2015, arXiv:1511.00561. [Google Scholar]
- Long, W.; Li, X.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural. Comput. Applic. 2020, 32, 6111–6124. [Google Scholar] [CrossRef]
- Neubauer, S.; Kolm, P.; Ho, C.Y.; Kwong, R.Y.; Desai, M.Y.; Dolman, S.F.; Appelbaum, E.; Desvigne-Nickens, P.; DiMarco, J.P.; Friedrich, M.G. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM registry. J. Am. Coll. Cardiol. 2019, 74, 2333–2345. [Google Scholar] [CrossRef]
- Avendi, M.; Kheradvar, A.; Jafarkhani, H. Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J. Cardiovasc. Magn. Reson. 2016, 18, P351. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Fujiwara, H.; Onodera, T.; Wu, D.; Hamashima, Y.; Kawai, C. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Heart 1986, 55, 575–581. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Positano, V.; Pingitore, A.; Strata, E.; Di Bella, G.; Formisano, F.; Spirito, P.; Lombardi, M. Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2010, 12, 21. [Google Scholar] [CrossRef] [Green Version]
SSFP | p Value* | LGE | p Value * | |
---|---|---|---|---|
Single-image type UNet | 0.87 ± 0.08 | 0.78 ± 0.12 | ||
MI-UNet | 0.842 ± 0.132 | 0.126 | 0.788±0.141 | 0.6393 |
SSFP | p Value * | LGE | p Value * | |
---|---|---|---|---|
Single-image type UNet | 0.87 ± 0.08 | 0.78 ± 0.12 | ||
MI-UNet | 0.87 ± 0.11 | 0.73 | 0.82 ± 0.16 | 0.06 |
MI-UNet | 0.89 ± 0.08 | 0.03 | 0.81 ± 0.20 | 0.21 |
MI-UNet | 0.85 ± 0.11 | 0.22 | 0.84 ± 0.16 | 0.002 |
MI-UNet | 0.92 ± 0.06 | <0.001 | 0.86 ± 0.11 | <0.001 |
MI-UNet. | Comparison with Single-Image Type UNet | Comparison with Transfer-Learned UNet | |||
---|---|---|---|---|---|
p Value | p Value | ||||
SSFP | |||||
LVC | 0.92 ± 0.06 | 0.91 ± 0.04 | 0.07 | 0.88 ± 0.14 | 0.01 |
LVM | 0.90 ± 0.05 | 0.86 ± 0.07 | <0.0001 | 0.86 ±0. 11 | 0.001 |
RV | 0.88 ± 0.15 | 0.84 ± 0.21 | 0.14 | 0.83 ± 0.19 | 0.03 |
Mean | 0.90 ± 0.07 | 0.87 ± 0.08 | 0.005 | 0.86 ± 0.13 | 0.005 |
LGE | |||||
LVC | 0.86 ± 0.12 | 0.78 ± 0.12 | <0.0001 | 0.83 ± 0.14 | 0.11 |
LVM | 0.89 ± 0.07 | 0.828 ± 0.08 | <0.0001 | 0.86 ± 0.09 | 0.01 |
RV | 0.75 ± 0.21 | 0.733 ± 0.21 | 0.56 | 0.69 ± 0.29 | 0.11 |
Mean | 0.83 ± 0.11 | 0.780 ± 0.10 | 0.001 | 0.79 ± 0.15 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Bhopalwala, H.; Dewaswala, N.; Arunachalam, S.P.; Enayati, M.; Farahani, N.Z.; Pasupathy, K.; Lokineni, S.; Bos, J.M.; Noseworthy, P.A.; et al. Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation. J. Imaging 2022, 8, 149. https://doi.org/10.3390/jimaging8050149
Chen D, Bhopalwala H, Dewaswala N, Arunachalam SP, Enayati M, Farahani NZ, Pasupathy K, Lokineni S, Bos JM, Noseworthy PA, et al. Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation. Journal of Imaging. 2022; 8(5):149. https://doi.org/10.3390/jimaging8050149
Chicago/Turabian StyleChen, David, Huzefa Bhopalwala, Nakeya Dewaswala, Shivaram P. Arunachalam, Moein Enayati, Nasibeh Zanjirani Farahani, Kalyan Pasupathy, Sravani Lokineni, J. Martijn Bos, Peter A. Noseworthy, and et al. 2022. "Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation" Journal of Imaging 8, no. 5: 149. https://doi.org/10.3390/jimaging8050149
APA StyleChen, D., Bhopalwala, H., Dewaswala, N., Arunachalam, S. P., Enayati, M., Farahani, N. Z., Pasupathy, K., Lokineni, S., Bos, J. M., Noseworthy, P. A., Arsanjani, R., Erickson, B. J., Geske, J. B., Ackerman, M. J., Araoz, P. A., & Arruda-Olson, A. M. (2022). Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation. Journal of Imaging, 8(5), 149. https://doi.org/10.3390/jimaging8050149