Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix
Abstract
:1. Introduction
2. Materials and Methods
- Determining the core of the defect (black pixels and excessively bright pixels);
- Defect determination. Restoration of pixels outside the core;
- Equalizing the contrast of the entire image, except for the defect;
- Restoration of the core of the defect by the interpolation algorithm;
- Selection of light lines on the restored image;
- Restoration of the background of the core of the defect and of the area adjacent to the core with an artificial neural network;
- Overlaying of the interpolation results (highlighted lines) on the background obtained by the neural network.
2.1. Improving the Image Contrast
2.2. Recovery of the Lost Image
- The contextual residual, which is the difference between an original image and an image obtained after downsampling to 512 × 512 and further upsampling to an original resolution;
- Attention scores, which act as characteristics of the region affinity of the part of the image outside the gap to the gap filled by the neural network. They are used to transfer image structure information outside the gap to the inside.
2.3. Image Binarization
3. Results
3.1. Determination of Defects
3.2. Equalizing Contrast in the Image
3.3. Restoring the Image in the Core of the Defect
3.4. Comparison of the Algorithm Versus Other Methods
3.5. Estimating the Accuracy of Recovering a Lost Image
3.6. Radiomics and Statistical Analyses
4. Discussion
5. Conclusions
- Defect highlighting;
- Equalization of image contrast outside the defect;
- Restoration of a defect by a combination of interpolation and artificial neural network.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; et al. The global burden of cancer 2013. JAMA Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewett, P.I.; Gangnon, R.E.; Elkin, E.; Hampton, J.M.; Jacobs, E.A. Geographic access to mammography facilities and frequency of mammography screening. Ann. Epidemiol. 2018, 28, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.-Y.; Loh, E.-W.; Lin, Y.-K.; Huang, T.-W.; Wang, Y.-H.; Wang, H.-W.; Tseng, Y.-C.; Yao, M.M.-S.; Tam, K.-W. Image quality and performance benchmarks in vehicle and hospital mammography. Clin. Breast Cancer 2020, 20, e358–e365. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Berns, E. Clinical mammography physics: State of practice. Clin. Imaging Phys. Curr. Emerg. Pract. 2020, 1, 89–106. [Google Scholar]
- Hussain, F.; Hammad, M.; Ksantini, R. Application of artificial intelligence in digital breast tomosynthesis and mammography. In Proceedings of the 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Bahrain, Bahrain, 29–30 September 2021; IEEE: Bahrain, Bahrain, 2021; pp. 638–645. [Google Scholar]
- Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Ansar, W.; Shahid, A.R.; Raza, B.; Dar, A.H. Breast cancer detection and localization using MobileNet based transfer learning for mammograms. In Proceedings of the Third International Symposium on Intelligent Computing Systems (ISICS), Sharjah, United Arab Emirates, 18–19 March 2020; Springer: Sharjah, United Arab Emirates, 2020; pp. 11–21. [Google Scholar]
- Tan, Y.J.; Sim, K.S.; Ting, F.F. Breast cancer detection using convolutional neural networks for mammogram imaging system. In Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, Malaysia, 27–29 November 2017; IEEE: Melaka, Malaysia, 2017; pp. 1–5. [Google Scholar]
- Kolchev, A.; Pasynkov, D.; Egoshin, I.; Kliouchkin, I.; Pasynkova, O.; Tumakov, D. YOLOv4-based CNN model versus nested contours algorithm in the suspicious lesion detection on the mammography image: A direct comparison in the real clinical settings. J. Imaging 2022, 8, 88. [Google Scholar] [CrossRef]
- Padmavathy, T.V.; Vimalkumar, M.N.; Sivakumar, N.; Gokulnath, C.B.; Parthasarathy, P. Performance analysis of pre-cancerous mammographic image enhancement feature using non-subsampled shearlet transform. Multimed. Tools Appl. 2021, 80, 26997–27012. [Google Scholar] [CrossRef]
- Gupta, B.; Tiwari, M.; Lamba, S.S. Visibility improvement and mass segmentation of mammogram images using quantile separated histogram equalisation with local contrast enhancement. CAAI Trans. Intell. Technol. 2019, 4, 73–79. [Google Scholar] [CrossRef]
- Ardra, J.; Grace, J.M.; Anto, D. Mammogram image denoising filters: A comparative study. In Proceedings of the 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), Mallasamudram, India, 3–4 March 2017; IEEE: Mallasamudram, India, 2017; pp. 184–189. [Google Scholar]
- Duan, X.; Mei, Y.; Wu, S.; Ling, Q.; Qin, G.; Ma, J.; Chen, C.; Qi, H.; Zhou, L.; Xu, Y. A multiscale contrast enhancement for mammogram using dynamic unsharp masking in Laplacian pyramid. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 557–564. [Google Scholar] [CrossRef]
- Oza, P.; Sharma, P.; Patel, S.; Bruno, A. A bottom-up review of image analysis methods for suspicious region detection in mammograms. J. Imaging 2021, 7, 190. [Google Scholar] [CrossRef] [PubMed]
- Rampun, A.; Scotney, B.W.; Morrow, P.J.; Wang, H.; Winder, J. Breast density classification using local quinary patterns with various neighbourhood topologies. J. Imaging 2018, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mukundan, R.; Boyd, S. Novel texture feature descriptors based on multi-fractal analysis and LBP for classifying breast density in mammograms. J. Imaging 2021, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Mridha, M.F.; Hamid, M.A.; Monowar, M.M.; Keya, A.J.; Ohi, A.Q.; Islam, M.R.; Kim, J.-M. A comprehensive survey on deep-learning-based breast cancer diagnosis. Cancers 2021, 13, 6116. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Montero, R.; Martinez-Rojas, J.-A.; Lopez-Espi, P.-L.; Nuñez-Martin, L.; Diez-Jimenez, E. Filtering of mammograms based on convolution with directional fractal masks to enhance microcalcifications. Appl. Sci. 2019, 9, 1194. [Google Scholar] [CrossRef] [Green Version]
- Dabass, J.; Arora, S.; Vig, R.; Hanmandlu, M. Mammogram image enhancement using entropy and CLAHE based intuitionistic fuzzy method. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: Noida, India, 2019; pp. 24–29. [Google Scholar]
- Ardymulya, I.; Wahyu, H. Mammographic Image enhancement using digital image processing technique. Int. J. Comput. Sci. Inf. Secur. 2018, 16, 222–226. [Google Scholar]
- Meenakshi, P.; Sanjay, T. Local entropy maximization based image fusion for contrast enhancement of mammogram. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 150–160. [Google Scholar]
- Ravikumar, M.; Rachana, P.G.; Shivaprasad, B.J.; Guru, D.S. Enhancement of mammogram images using CLAHE and bilateral filter approaches. In Proceedings of the 2nd International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Goa, India, 21–22 August 2021; Springer: Goa, India, 2021; pp. 261–271. [Google Scholar]
- Kayumov, Z.; Tumakov, D.; Mosin, S. Recognition of handwritten digits based on images spectrum decomposition. In Proceedings of the 23th International Conference on Digital Signal Processing and its Applications (DSPA), Moscow, Russian Federation, 24–26 March 2021; IEEE: Moscow, Russia, 2021. [Google Scholar]
- Kokoshkin, A.V.; Korotkov, V.A.; Korotkov, K.V.; Novichikhin, E.P. Retouching and restoration of missing image fragments by means of the iterative calculation of their spectra. Comput. Opt. 2019, 43, 1030–1040. [Google Scholar] [CrossRef]
- Hiya, R.; Subhajit, C.; Toshihiko, Y.; Tatsuaki, H. Image inpainting using frequency-domain priors. J. Electron. Imaging 2021, 30, 023016. [Google Scholar]
- Tavakoli, A.; Mousavi, P.; Zarmehi, F. Modified algorithms for image inpainting in Fourier transform domain. Comput. Appl. Math. 2018, 37, 5239–5252. [Google Scholar] [CrossRef]
- Xin, H.; Pengfei, X.; Renhe, J.; Haoqiang, F. Deep fusion network for image completion. arXiv 2019, arXiv:1904.08060. [Google Scholar]
- Zili, Y.; Qiang, T.; Shekoofeh, A.; Daesik, J.; Zhan, X. Contextual residual aggregation for ultra high-resolution image inpainting. arXiv 2020, arXiv:2005.09704. [Google Scholar]
- Kayumov, Z.; Tumakov, D.; Mosin, S. An effect of binarization on handwritten digits recognition by hierarchical neural networks. Lect. Notes Netw. Syst. 2022, 300, 94–106. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Sushreeta, T.; Tripti, S. Unified preprocessing and enhancement technique for mammogram images. Procedia Comput. Sci. 2020, 167, 285–292. [Google Scholar]
- Muneeswaran, V.; Rajasekaran, M.P. Local contrast regularized contrast limited adaptive histogram equalization using tree seed algorithm—An aid for mammogram images enhancement. In Proceedings of the Third International Conference on Smart Computing and Informatics (SCI), Odisha, India, 21–22 December 2018; Springer: Odisha, India, 2019; pp. 693–701. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Rundo, L.; Tangherloni, A.; Nobile, M.S.; Militello, C.; Besozzi, D.; Mauri, G.; Cazzaniga, P. MedGA: A novel evolutionary method for image enhancement in medical imaging systems. Expert Syst. Appl. 2019, 119, 387–399. [Google Scholar] [CrossRef]
- Liang, D.; Li, L.; Wei, M.; Yang, S.; Zhang, L.; Yang, W.; Du, Y.; Zhou, H. Semantically contrastive learning for low-light image enhancement. arXiv 2021, arXiv:2112.06451. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shen, Y.; Li, H. VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 2014, 23, 4270–4281. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Simoncelli, E.P. Translation insensitive image similarity in complex wavelet domain. In Proceedings of the 1988 International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New York, NY, USA, 11–14 April 1988; IEEE: New York, NY, USA, 1988; pp. 573–576. [Google Scholar]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers (ACSSC), Pacific Grove, CA, USA, 9–12 November 2003; IEEE: Pacific Grove, CA, USA, 2003; pp. 1398–1402. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Image quality assessment: Unifying structure and texture similarity. arXiv 2020, arXiv:2004.07728. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Zhang, L.; Mou, X.; Bovik, A.C. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Trans. Image Process. 2014, 23, 684–695. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Salt Lake City, UT, USA, 2018; pp. 586–595. [Google Scholar]
- Laparra, V.; Ballé, J.; Berardino, A.; Simoncelli, E.P. Perceptual image quality assessment using a normalized Laplacian pyramid. Electron. Imaging 2016, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Stefano, A.; Leal, A.; Richiusa, S.; Trang, P.; Comelli, A.; Benfante, V.; Cosentino, S.; Sabini, M.G.; Tuttolomondo, A.; Altieri, R.; et al. Robustness of PET radiomics features: Impact of co-registration with MRI. Appl. Sci. 2021, 11, 10170. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Comelli, A.; Giaccone, P.; Cammarata, F.P.; Richiusa, S.; Scopelliti, F.; Pometti, M.; Ficarra, M.; Cosentino, S.; et al. A new preclinical decision support system based on PET radiomics: A preliminary study on the evaluation of an innovative 64Cu-labeled chelator in mouse models. J. Imaging 2022, 8, 92. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Iori, M.; Di Castelnuovo, C.; Verzellesi, L.; Meglioli, G.; Lippolis, D.G.; Nitrosi, A.; Monelli, F.; Besutti, G.; Trojani, V.; Bertolini, M.; et al. Mortality prediction of COVID-19 patients using radiomic and neural network features extracted from a wide chest X-ray sample size: A robust approach for different medical imbalanced scenarios. Appl. Sci. 2022, 12, 3903. [Google Scholar] [CrossRef]
- Alongi, P.; Laudicella, R.; Panasiti, F.; Stefano, A.; Comelli, A.; Giaccone, P.; Arnone, A.; Minutoli, F.; Quartuccio, N.; Cupidi, C.; et al. Radiomics analysis of brain [18F]FDG PET/CT to predict Alzheimer’s disease in patients with amyloid PET positivity: A preliminary report on the application of SPM cortical segmentation, pyradiomics and machine-learning analysis. Diagnostics 2022, 12, 933. [Google Scholar] [CrossRef] [PubMed]
- Daimiel Naranjo, I.; Gibbs, P.; Reiner, J.S.; Lo Gullo, R.; Thakur, S.B.; Jochelson, M.S.; Thakur, N.; Baltzer, P.A.T.; Helbich, T.H.; Pinker, K. Breast lesion classification with multiparametric breast MRI using radiomics and machine learning: A comparison with radiologists’ performance. Cancers 2022, 14, 1743. [Google Scholar] [CrossRef] [PubMed]
Input Image | Methods | Metrics | |
---|---|---|---|
BRISQUE ↓ | NIQE ↓ | ||
Figure 1a | Original image | 18.72 | 10.41 |
CLAHE | 24.68 | 47.54 | |
MedGA | 95.44 | 14.03 | |
SCL-LLE | 17.75 | 9.18 | |
Proposed method | 15.55 | 5.22 | |
Figure 1b | Original image | 14.34 | 9.77 |
CLAHE | 40.01 | 10.17 | |
MedGA | 72.83 | 12.21 | |
SCL-LLE | 14.89 | 7.79 | |
Proposed method | 10.61 | 5.95 |
Metrics | Original Image | NN | Interpolation | Overlay |
---|---|---|---|---|
SSIM ↑ | 1.000 | 0.947 | 0.921 | 0.994 |
VIF ↑ | 0.999 | 0.644 | 0.607 | 0.867 |
VSI ↑ | 1.000 | 0.987 | 0.979 | 0.998 |
CW_SSIM ↑ | 1.000 | 0.928 | 0.869 | 0.997 |
MS_SSIM ↑ | 1.000 | 0.957 | 0.925 | 0.999 |
FSIM ↑ | 1.000 | 0.956 | 0.936 | 0.995 |
DISTS ↓ | 0.000 | 0.030 | 0.036 | 0.001 |
GMSD ↓ | 0.000 | 0.093 | 0.116 | 0.023 |
LPIPS-VGG ↓ | 0.000 | 0.011 | 0.023 | 0.001 |
NLPD ↓ | 0.000 | 0.855 | 1.087 | 0.195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumakov, D.; Kayumov, Z.; Zhumaniezov, A.; Chikrin, D.; Galimyanov, D. Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix. J. Imaging 2022, 8, 128. https://doi.org/10.3390/jimaging8050128
Tumakov D, Kayumov Z, Zhumaniezov A, Chikrin D, Galimyanov D. Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix. Journal of Imaging. 2022; 8(5):128. https://doi.org/10.3390/jimaging8050128
Chicago/Turabian StyleTumakov, Dmitrii, Zufar Kayumov, Alisher Zhumaniezov, Dmitry Chikrin, and Diaz Galimyanov. 2022. "Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix" Journal of Imaging 8, no. 5: 128. https://doi.org/10.3390/jimaging8050128
APA StyleTumakov, D., Kayumov, Z., Zhumaniezov, A., Chikrin, D., & Galimyanov, D. (2022). Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix. Journal of Imaging, 8(5), 128. https://doi.org/10.3390/jimaging8050128