A Hybrid Method for 3D Reconstruction of MR Images
Abstract
:1. Introduction
- A comparative analysis between FE and MPU implicits, which identifies the key strengths and weaknesses of each method;
- A reconstruction process that allows the strengths of one method to offset the weaknesses inherent in another, offering thus a higher geometry precision;
- A reference metric for evaluating the quality of reconstructions, based on a qualitative and quantitative analysis.
2. Related Work
3. Flying Edges and MPU Implicit Approach
3.1. Flying Edges (FE)
3.2. Multi-Level Partition of Unity (MPU) Implicit Models
4. 3D Hybrid Reconstruction Method
5. Hybrid Reconstruction Results and Analysis
5.1. Evaluating Reconstruction Error
5.2. Curvature Analysis
5.3. Comparison to FreeSurfer
5.4. Runtime
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sub | FE | MPU | Hybrid | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | |
11 | 0.011 | 2.55 | 0.35 | 0.71 | 32.71 | 78.35 | 0.010 | 4.25 | 0.34 | 0.77 | 20.45 | 80.59 | 0.006 | 3.80 | 0.31 | 0.60 | 45.74 | 88.62 |
12 | 0.003 | 2.38 | 0.36 | 0.73 | 31.33 | 76.29 | 0.012 | 4.34 | 0.34 | 0.74 | 21.75 | 82.89 | 0.005 | 4.53 | 0.32 | 0.61 | 44.36 | 87.50 |
13 | 0.002 | 2.37 | 0.34 | 0.70 | 33.30 | 79.88 | 0.009 | 5.39 | 0.34 | 0.78 | 19.51 | 79.64 | 0.006 | 3.49 | 0.30 | 0.59 | 45.14 | 89.19 |
14 | 0.004 | 2.56 | 0.35 | 0.73 | 31.18 | 76.51 | 0.011 | 4.18 | 0.35 | 0.77 | 20.47 | 80.73 | 0.007 | 4.51 | 0.32 | 0.61 | 43.69 | 87.43 |
15 | 0.009 | 2.53 | 0.35 | 0.73 | 31.36 | 76.56 | 0.004 | 5.09 | 0.35 | 0.77 | 20.22 | 80.33 | 0.006 | 8.25 | 0.34 | 0.61 | 43.61 | 87.65 |
16 | 0.011 | 2.44 | 0.34 | 0.72 | 32.24 | 78.32 | 0.010 | 4.97 | 0.33 | 0.75 | 21.51 | 82.49 | 0.009 | 3.87 | 0.31 | 0.59 | 45.78 | 88.78 |
17 | 0.015 | 2.37 | 0.34 | 0.71 | 32.31 | 78.57 | 0.008 | 7.20 | 0.34 | 0.75 | 21.22 | 82.10 | 0.004 | 3.79 | 0.30 | 0.59 | 45.72 | 89.05 |
18 | 0.015 | 2.45 | 0.35 | 0.71 | 32.83 | 78.32 | 0.009 | 5.24 | 0.34 | 0.75 | 21.57 | 82.14 | 0.006 | 4.20 | 0.31 | 0.59 | 46.61 | 88.74 |
19 | 0.016 | 2.46 | 0.35 | 0.71 | 32.63 | 78.39 | 0.010 | 5.16 | 0.33 | 0.74 | 21.88 | 82.76 | 0.007 | 3.59 | 0.31 | 0.59 | 47.02 | 89.16 |
20 | 0.003 | 2.33 | 0.34 | 0.71 | 33.07 | 78.67 | 0.017 | 5.02 | 0.35 | 0.78 | 19.35 | 78.81 | 0.004 | 3.88 | 0.31 | 0.60 | 44.99 | 88.52 |
21 | 0.002 | 2.56 | 0.35 | 0.71 | 34.06 | 78.94 | 0.003 | 4.20 | 0.35 | 0.77 | 20.41 | 80.39 | 0.004 | 5.17 | 0.31 | 0.60 | 45.16 | 88.50 |
22 | 0.007 | 2.46 | 0.36 | 0.73 | 31.42 | 75.97 | 0.010 | 7.27 | 0.36 | 0.78 | 20.02 | 79.68 | 0.009 | 4.79 | 0.32 | 0.61 | 43.70 | 86.97 |
23 | 0.009 | 2.48 | 0.35 | 0.73 | 31.70 | 76.86 | 0.010 | 4.38 | 0.35 | 0.78 | 19.81 | 79.87 | 0.031 | 5.50 | 0.32 | 0.61 | 43.72 | 87.41 |
24 | 0.005 | 2.46 | 0.36 | 0.73 | 31.60 | 76.51 | 0.014 | 4.40 | 0.34 | 0.76 | 20.87 | 81.13 | 0.006 | 5.87 | 0.32 | 0.60 | 45.29 | 87.70 |
25 | 0.005 | 2.39 | 0.35 | 0.71 | 33.35 | 78.87 | 0.011 | 4.27 | 0.35 | 0.77 | 20.37 | 80.39 | 0.009 | 4.17 | 0.30 | 0.59 | 46.17 | 88.96 |
26 | 0.015 | 2.42 | 0.36 | 0.74 | 30.70 | 75.65 | 0.004 | 4.30 | 0.33 | 0.74 | 21.58 | 83.03 | 0.008 | 3.97 | 0.32 | 0.61 | 44.09 | 87.39 |
27 | 0.006 | 2.44 | 0.35 | 0.69 | 35.98 | 80.32 | 0.014 | 6.91 | 0.37 | 0.81 | 18.07 | 76.31 | 0.009 | 4.48 | 0.31 | 0.61 | 43.55 | 87.99 |
28 | 0.015 | 2.53 | 0.34 | 0.71 | 32.72 | 78.73 | 0.014 | 4.88 | 0.35 | 0.78 | 19.54 | 78.00 | 0.006 | 3.78 | 0.30 | 0.59 | 45.62 | 89.01 |
29 | 0.015 | 2.54 | 0.34 | 0.70 | 33.24 | 79.92 | 0.012 | 3.87 | 0.33 | 0.76 | 20.22 | 80.80 | 0.006 | 4.16 | 0.30 | 0.59 | 45.69 | 89.47 |
30 | 0.008 | 2.47 | 0.37 | 0.72 | 33.57 | 76.42 | 0.009 | 5.28 | 0.36 | 0.78 | 19.77 | 78.76 | 0.004 | 7.43 | 0.33 | 0.61 | 44.35 | 86.92 |
31 | 0.007 | 2.48 | 0.34 | 0.70 | 33.60 | 79.36 | 0.003 | 4.10 | 0.35 | 0.78 | 19.72 | 79.62 | 0.006 | 4.73 | 0.31 | 0.60 | 45.28 | 88.91 |
32 | 0.009 | 2.41 | 0.35 | 0.72 | 32.50 | 77.78 | 0.005 | 5.42 | 0.35 | 0.77 | 20.03 | 79.65 | 0.008 | 5.72 | 0.31 | 0.60 | 45.24 | 88.24 |
33 | 0.012 | 2.32 | 0.35 | 0.71 | 32.60 | 78.42 | 0.011 | 4.34 | 0.35 | 0.77 | 20.01 | 80.04 | 0.009 | 3.59 | 0.31 | 0.59 | 45.71 | 88.84 |
34 | 0.012 | 2.58 | 0.34 | 0.70 | 34.18 | 79.50 | 0.003 | 4.84 | 0.35 | 0.78 | 19.08 | 79.75 | 0.005 | 5.01 | 0.31 | 0.60 | 44.66 | 88.64 |
35 | 0.002 | 2.43 | 0.35 | 0.72 | 32.87 | 78.03 | 0.007 | 4.19 | 0.36 | 0.79 | 19.14 | 78.38 | 0.009 | 3.46 | 0.31 | 0.61 | 43.80 | 87.95 |
36 | 0.010 | 2.46 | 0.34 | 0.70 | 33.18 | 79.65 | 0.002 | 4.24 | 0.35 | 0.78 | 19.39 | 79.25 | 0.011 | 4.50 | 0.30 | 0.59 | 45.38 | 89.44 |
37 | 0.010 | 2.48 | 0.34 | 0.70 | 33.66 | 79.68 | 0.009 | 4.23 | 0.33 | 0.76 | 20.91 | 81.35 | 0.017 | 6.50 | 0.30 | 0.58 | 47.30 | 89.85 |
38 | 0.012 | 2.49 | 0.34 | 0.70 | 33.25 | 79.65 | 0.006 | 4.02 | 0.34 | 0.76 | 20.11 | 80.84 | 0.007 | 3.80 | 0.30 | 0.59 | 45.46 | 89.25 |
39 | 0.009 | 2.54 | 0.35 | 0.73 | 31.53 | 77.09 | 0.004 | 8.45 | 0.37 | 0.76 | 20.81 | 81.24 | 0.009 | 8.19 | 0.32 | 0.60 | 44.65 | 87.94 |
Appendix B
References
- Doré, V.; Villemagne, V.L.; Bourgeat, P.; Fripp, J.; Acosta, O.; Chetélat, G.; Zhou, L.; Martins, R.; Ellis, K.A.; Masters, C.L.; et al. Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurol. 2013, 70, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Custodio, L.; Pesco, S.; Silva, C. An extended triangulation to the Marching Cubes 33 algorithm. J. Braz. Comput. Soc. 2019, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, D.; Wolf, M.; Moreland, K. Isosurface Visualization Miniapplication; Technical Report, Tech. Rep. SAND2018-2780O; Sandia National Laboratories: Albuquerque, NM, USA, 2018.
- Schroeder, W.; Maynard, R.; Geveci, B. Flying edges: A high-performance scalable isocontouring algorithm. In Proceedings of the 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), Chicago, IL, USA, 25–26 October 2015; pp. 33–40. [Google Scholar]
- Moench, T.; Adler, S.; Preim, B. Staircase-aware smoothing of medical surface meshes. In Proceedings of the 2nd Eurographics Conference on Visual Computing for Biology and Medicine, Leipzig, Germany, 1–2 July 2010; pp. 83–90. [Google Scholar]
- Marker, J.; Braude, I.; Museth, K.; Breen, D.E. Contour-Based Surface Reconstruction using Implicit Curve Fitting, and Distance Field Filtering and Interpolation. Vol. Graph. 2006, 2006, 95–102. [Google Scholar]
- Pihuit, A.; Palombi, O.; Cani, M.P. Reconstruction Implicite de Surfaces 3D à Partir de Régions 2D dans des Plans Parallèles; AFIG 2009-22e Journées de l’Association Française d’Informatique Graphique: Arles, France, 2009. [Google Scholar]
- Yoo, D.J. Three-dimensional surface reconstruction of human bone using a B-spline based interpolation approach. Comput.-Aided Des. 2011, 43, 934–947. [Google Scholar] [CrossRef]
- Braude, I.; Marker, J.; Museth, K.; Nissanov, J.; Breen, D. Contour-based surface reconstruction using mpu implicit models. Graph. Model. 2007, 69, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Dürst, M.J. Re: Additional reference to “marching cubes”. ACM SIGGRAPH Comput. Graph. 1988, 22, 243. [Google Scholar] [CrossRef]
- Nielson, G.M.; Hamann, B. The asymptotic decider: Resolving the ambiguity in Marching Cubes. IEEE Vis. 1991, 91, 83–91. [Google Scholar]
- Natarajan, B.K. On generating topologically consistent isosurfaces from uniform samples. Vis. Comput. 1994, 11, 52–62. [Google Scholar] [CrossRef]
- Chernyaev, E. Marching Cubes 33: Construction of Topologically Correct Isosurfaces. Tech. Rep.CN/95-17, CERN. 1995. Available online: https://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Chernyaev96.pdf (accessed on 30 March 2022).
- Nielson, G. On Marching Cubes. IEEE Trans. Vis. Comput. Graph. 2003, 9, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Lewiner, T.; Lopes, H.; Vieira, A.W.; Tavares, G. Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 2003, 8, 1–15. [Google Scholar] [CrossRef]
- Custodio, L.; Etiene, T.; Pesco, S.; Silva, C. Practical considerations on Marching Cubes 33 topological correctness. Comput. Graph. 2013, 37, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Grosso, R. Construction of topologically correct and manifold isosurfaces. Comput. Graph. Forum 2016, 35, 187–196. [Google Scholar] [CrossRef]
- Raman, S.; Wenger, R. Quality isosurface mesh generation using an extended marching cubes lookup table. Comput. Graph. Forum 2008, 27, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, C.L.; Coyle, E.J.; Lin, K.N. Arbitrary topology shape reconstruction from planar cross sections. Graph. Model. Image Process. 1996, 58, 524–543. [Google Scholar] [CrossRef] [Green Version]
- Boissonnat, J.D. Shape reconstruction from planar cross sections. Comput. Vision Graph. Image Process. 1988, 44, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.; Kedem, Z.M.; Uselton, S.P. Optimal surface reconstruction from planar contours. Commun. ACM 1977, 20, 693–702. [Google Scholar] [CrossRef]
- Fujimura, K.; Kuo, E. Shape reconstruction from contours using isotopic deformation. Graph. Model. Image Process. 1999, 61, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, S.; Dennehy, T.G. A new general triangulation method for planar contours. ACM Siggraph Comput. Graph. 1982, 16, 69–75. [Google Scholar] [CrossRef]
- Meyers, D.; Skinner, S.; Sloan, K. Surfaces from contours. ACM Trans. Graph. (TOG) 1992, 11, 228–258. [Google Scholar] [CrossRef]
- Sunderland, K.; Woo, B.; Pinter, C.; Fichtinger, G. Reconstruction of surfaces from planar contours through contour interpolation. In Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9415, p. 94151R. [Google Scholar]
- Galin, E.; Akkouche, S. Fast surface reconstruction from contours using implicit surfaces. Implicit Surf. 1998, 98, 139–144. [Google Scholar]
- Jones, M.W.; Chen, M. A new approach to the construction of surfaces from contour data. Comput. Graph. Forum 1994, 13, 75–84. [Google Scholar] [CrossRef]
- Levin, D. Multidimensional reconstruction by set-valued approximations. IMA J. Numer. Anal. 1986, 6, 173–184. [Google Scholar] [CrossRef]
- Ohtake, Y.; Belyaev, A.; Alexa, M.; Turk, G.; Seidel, H.P. Multi-level partition of unity implicits. In ACM Trans. Graph. (SIGGRAPH Proc.); 2003; pp. 463–470. Available online: https://faculty.cc.gatech.edu/~turk/my_papers/mpu_implicits.pdf (accessed on 30 March 2022).
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Jolesz, F.A., Ed.; Springer: New York, NY, USA, 2014; pp. 277–289. [Google Scholar]
- Schroeder, W.J.; Lorensen, B.; Martin, K. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics; Kitware: New York, NY, USA, 2004. [Google Scholar]
- Taubin, G.; Zhang, T.; Golub, G. Optimal surface smoothing as filter design. In Proceedings of the European Conference on Computer Vision, Cambridge, UK, 5–18 April 1996; pp. 283–292. [Google Scholar]
- Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.B.Y.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Dale, A.; Fischl, B.; Sereno, M. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Kraft, D. Computing the Hausdorff distance of two sets from their distance functions. Int. J. Comput. Geom. Appl. 2020, 30, 19–49. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [Green Version]
Name | # of Slices | Resolution | xy:z |
---|---|---|---|
Brain | 65 | 256 × 256 | 1:1.3 |
Skull-Bone | 65 | 256 × 256 | 1:1.3 |
Ventricle | 65 | 256 × 256 | 1:1.3 |
Kidney | 80 | 384 × 282 | 1:1 |
Name | FE | MPU | Hybrid | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | |
Brain | 0.008 | 2.68 | 0.31 | 0.79 | 39.86 | 72.08 | 0.006 | 3.72 | 0.32 | 0.81 | 22.34 | 81.48 | 0.01 | 3.45 | 0.27 | 0.69 | 43.36 | 84.04 |
Ventricle | 0.05 | 1.78 | 0.29 | 0.64 | 42.59 | 84.21 | 0.06 | 3.34 | 0.34 | 0.79 | 55.13 | 86.55 | 0.03 | 1.53 | 0.28 | 0.61 | 58.52 | 88.83 |
Bone | 0.02 | 1.04 | 0.30 | 0.75 | 36.67 | 80.59 | 0.05 | 4.73 | 0.33 | 0.83 | 22.64 | 78.57 | 0.02 | 1.53 | 0.28 | 0.72 | 39.51 | 83.32 |
Kidney | 0.01 | 2.18 | 0.32 | 0.76 | 24.42 | 74.09 | 0.02 | 4.67 | 0.33 | 0.80 | 26.52 | 76.24 | 0.008 | 2.73 | 0.31 | 0.66 | 37.47 | 85.54 |
Sub | FE | MPU | Hybrid | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | Min | Max | St dev | Mean | % < 0.5 | % < 1.0 | |
1 | 0.005 | 2.51 | 0.35 | 0.71 | 32.78 | 78.41 | 0.003 | 7.36 | 0.36 | 0.78 | 19.33 | 78.73 | 0.007 | 3.89 | 0.31 | 0.60 | 45.16 | 88.64 |
2 | 0.010 | 2.47 | 0.34 | 0.71 | 33.17 | 78.96 | 0.011 | 4.66 | 0.35 | 0.77 | 20.09 | 79.89 | 0.010 | 4.45 | 0.31 | 0.59 | 45.92 | 88.95 |
3 | 0.006 | 2.41 | 0.35 | 0.73 | 31.28 | 76.48 | 0.005 | 4.81 | 0.34 | 0.76 | 20.63 | 81.12 | 0.006 | 5.06 | 0.32 | 0.61 | 44.76 | 87.79 |
4 | 0.002 | 2.42 | 0.34 | 0.70 | 33.97 | 79.32 | 0.009 | 5.01 | 0.35 | 0.78 | 19.22 | 79.10 | 0.006 | 5.47 | 0.31 | 0.60 | 44.15 | 88.64 |
5 | 0.007 | 2.38 | 0.34 | 0.70 | 33.70 | 79.31 | 0.092 | 5.82 | 0.35 | 0.76 | 20.13 | 81.35 | 0.003 | 4.20 | 0.30 | 0.59 | 45.52 | 89.08 |
6 | 0.009 | 2.42 | 0.34 | 0.72 | 32.11 | 78.52 | 0.002 | 4.96 | 0.34 | 0.76 | 21.04 | 81.33 | 0.008 | 4.10 | 0.30 | 0.59 | 46.69 | 89.25 |
7 | 0.006 | 2.35 | 0.34 | 0.71 | 33.26 | 79.13 | 0.002 | 5.49 | 0.34 | 0.77 | 20.10 | 80.68 | 0.001 | 3.21 | 0.30 | 0.60 | 44.15 | 88.64 |
8 | 0.006 | 2.35 | 0.34 | 0.71 | 33.26 | 79.13 | 0.002 | 4.62 | 0.34 | 0.77 | 20.10 | 80.69 | 0.001 | 6.63 | 0.30 | 0.60 | 44.85 | 88.75 |
9 | 0.007 | 2.49 | 0.34 | 0.69 | 34.89 | 80.57 | 0.005 | 4.99 | 0.33 | 0.74 | 22.11 | 83.12 | 0.004 | 3.85 | 0.30 | 0.57 | 48.60 | 90.19 |
10 | 0.003 | 2.56 | 0.34 | 0.70 | 34.16 | 80.12 | 0.011 | 4.62 | 0.33 | 0.74 | 21.63 | 82.75 | 0.003 | 3.92 | 0.29 | 0.58 | 46.89 | 90.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechelek, L.; Horna, S.; Zrour, R.; Naudin, M.; Guillevin, C. A Hybrid Method for 3D Reconstruction of MR Images. J. Imaging 2022, 8, 103. https://doi.org/10.3390/jimaging8040103
Lechelek L, Horna S, Zrour R, Naudin M, Guillevin C. A Hybrid Method for 3D Reconstruction of MR Images. Journal of Imaging. 2022; 8(4):103. https://doi.org/10.3390/jimaging8040103
Chicago/Turabian StyleLechelek, Loubna, Sebastien Horna, Rita Zrour, Mathieu Naudin, and Carole Guillevin. 2022. "A Hybrid Method for 3D Reconstruction of MR Images" Journal of Imaging 8, no. 4: 103. https://doi.org/10.3390/jimaging8040103
APA StyleLechelek, L., Horna, S., Zrour, R., Naudin, M., & Guillevin, C. (2022). A Hybrid Method for 3D Reconstruction of MR Images. Journal of Imaging, 8(4), 103. https://doi.org/10.3390/jimaging8040103