Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments
Abstract
:1. Introduction
2. Development of the Hyperspectral Imaging Core-Scanning Technique
3. Methodological Workflow
3.1. Instrument Description and Data Acquisition
3.2. Data Preprocessing
3.3. Data Post-Processing
4. Biogeochemical Interpretation of Sediment Reflectance Spectra
4.1. Organic Components
4.2. Inorganic Components
5. Applications
5.1. Seasonal Scale Sedimentation in Varved Lake Sediments
5.2. Long-Term Reconstruction of Aquatic Productivity and Anoxia
5.3. Identification of Stratigraphic Changes and Sedimentary Structures
6. Potential Uses and Limitations
7. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smol, J.P.; Birks, H.J.B.; Last, W.M. Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; ISBN 978-90-481-6048-8. [Google Scholar]
- Last, W.M.; Smol, J.P. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; ISBN 978-90-481-6021-1. [Google Scholar]
- Rothwell, R.G.; Rack, F.R. New techniques in sediment core analysis: An introduction. Geol. Soc. Lond. Spéc. Publ. 2006, 267, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Francus, P. Image Analysis, Sediments and Paleoenvironments; Developments in Paleoenvironmental Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume 7, ISBN 1-4020-2061-9. [Google Scholar]
- Croudace, I.; Rothwell, R. Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9848-8. [Google Scholar]
- Butz, C.; Grosjean, M.; Fischer, D.; Wunderle, S.; Tylmann, W.; Rein, B. Hyperspectral imaging spectroscopy: A promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens. 2015, 9, 96031. [Google Scholar] [CrossRef] [Green Version]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Methods Prim. 2021, 1, 62. [Google Scholar] [CrossRef]
- Zolitschka, B.; Francus, P.; Ojala, A.E.; Schimmelmann, A. Varves in lake sediments—A review. Quat. Sci. Rev. 2015, 117, 1–41. [Google Scholar] [CrossRef]
- Rein, B.; Sirocko, F. In-situ reflectance spectroscopy—Analysing techniques for high-resolution pigment logging in sediment cores. Geol. Rundsch. 2002, 91, 950–954. [Google Scholar] [CrossRef]
- Von Gunten, L.; Grosjean, M.; Rein, B.; Urrutia, R.; Appleby, P. A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 2009, 19, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Jacq, K.; Perrette, Y.; Fanget, B.; Sabatier, P.; Coquin, D.; Martinez-Lamas, R.; Debret, M.; Arnaud, F. High-resolution prediction of organic matter concentration with hyperspectral imaging on a sediment core. Sci. Total Environ. 2019, 663, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Butz, C.; Grosjean, M.; Goslar, T.; Tylmann, W. Hyperspectral imaging of sedimentary bacterial pigments: A 1700-year history of meromixis from varved Lake Jaczno, northeast Poland. J. Paleolimnol. 2017, 58, 57–72. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Poraj-Górska, A.; Enters, D.; Tylmann, W. Sedimentary Bacteriopheophytin a as an indicator of meromixis in varved lake sediments of Lake Jaczno, north-east Poland, CE 1891–2010. Glob. Planet. Chang. 2016, 144, 109–118. [Google Scholar] [CrossRef]
- Schneider, T.; Rimer, D.; Butz, C.; Grosjean, M. A high-resolution pigment and productivity record from the varved Ponte Tresa basin (Lake Lugano, Switzerland) since 1919: Insight from an approach that combines hyperspectral imaging and high-performance liquid chromatography. J. Paleolimnol. 2018, 60, 381–398. [Google Scholar] [CrossRef]
- Ghanbari, H.; Jacques, O.; Adaïmé, M.-É.; Gregory-Eaves, I.; Antoniades, D. Remote Sensing of Lake Sediment Core Particle Size Using Hyperspectral Image Analysis. Remote Sens. 2020, 12, 3850. [Google Scholar] [CrossRef]
- Jacq, K.; Giguet-Covex, C.; Sabatier, P.; Perrette, Y.; Fanget, B.; Coquin, D.; Debret, M.; Arnaud, F. High-resolution grain size distribution of sediment core with hyperspectral imaging. Sediment. Geol. 2019, 393–394, 105536. [Google Scholar] [CrossRef]
- Jacq, K.; Rapuc, W.; Benoit, A.; Coquin, D.; Fanget, B.; Perrette, Y.; Sabatier, P.; Wilhelm, B.; Debret, M.; Arnaud, F. Sedimentary structure discrimination with hyperspectral imaging in sediment cores. Sci. Total Environ. 2021, 152018, in press. [Google Scholar] [CrossRef]
- Rapuc, W.; Jacq, K.; Develle-Vincent, A.-L.; Sabatier, P.; Fanget, B.; Perrette, Y.; Coquin, D.; Debret, M.; Wilhelm, B.; Arnaud, F. XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores. Sediment. Geol. 2020, 409, 105776. [Google Scholar] [CrossRef]
- Swain, E.B. Measurement and interpretation of sedimentary pigments. Freshw. Biol. 1985, 15, 53–75. [Google Scholar] [CrossRef]
- Züllig, H.; Rheineck, S.G. Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung-Mit Ergebnissen aus dem Lago Cadagno, Rotsee und Lobsigensee. Swiss J. Hydrol. 1985, 47, 87–126. [Google Scholar] [CrossRef]
- Deaton, B.C.; Balsam, W.L. Visible spectroscopy; a rapid method for determining hematite and goethite concentration in geological materials. J. Sediment. Res. 1991, 61, 628–632. [Google Scholar] [CrossRef]
- Balsam, W.L.; Deaton, B.C. Determining the composition of late Quaternary marine sediments from NUV, VIS, and NIR diffuse reflectance spectra. Mar. Geol. 1996, 134, 31–55. [Google Scholar] [CrossRef]
- Rein, B.; Lückge, A.; Reinhardt, L.; Sirocko, F.; Wolf, A.; Dullo, W.-C. El Niño variability off Peru during the last 20,000 years. Paleoceanography 2005, 20, 2004PA001099. [Google Scholar] [CrossRef]
- Das, B.; Vinebrooke, R.D.; Sanchez-Azofeifa, A.; Rivard, B.; Wolfe, A.P. Inferring sedimentary chlorophyll concentrations with reflectance spectroscopy: A novel approach to reconstructing historical changes in the trophic status of mountain lakes. Can. J. Fish. Aquat. Sci. 2005, 62, 1067–1078. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.P.; Vinebrooke, R.D.; Michelutti, N.; Rivard, B.; Das, B. Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: Methodology and paleolimnological validation. J. Paleolimnol. 2006, 36, 91–100. [Google Scholar] [CrossRef]
- Michelutti, N.; Blais, J.M.; Cumming, B.F.; Paterson, A.M.; Rühland, K.; Wolfe, A.P.; Smol, J.P. Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J. Paleolimnol. 2010, 43, 205–217. [Google Scholar] [CrossRef]
- Michelutti, N.; Smol, J. Visible spectroscopy reliably tracks trends in paleo-production. J. Paleolimnol. 2016, 56, 253–265. [Google Scholar] [CrossRef]
- Ancin-Murguzur, F.J.; Brown, A.G.; Clarke, C.; Sjøgren, P.; Svendsen, J.I.; Alsos, I.G. How well can near infrared reflectance spectroscopy (NIRS) measure sediment organic matter in multiple lakes? J. Paleolimnol. 2020, 64, 59–69. [Google Scholar] [CrossRef]
- Meyer-Jacob, C.; Michelutti, N.; Paterson, A.M.; Monteith, D.; Yang, H.; Weckström, J.; Smol, J.P.; Bindler, R. Inferring Past Trends in Lake Water Organic Carbon Concentrations in Northern Lakes Using Sediment Spectroscopy. Environ. Sci. Technol. 2017, 51, 13248–13255. [Google Scholar] [CrossRef]
- Favot, E.J.; Hadley, K.R.; Paterson, A.M.; Michelutti, N.; Watson, S.B.; Zastepa, A.; Hutchinson, N.J.; Vinebrooke, R.D.; Smol, J.P. Using visible near-infrared reflectance spectroscopy (VNIRS) of lake sediments to estimate historical changes in cyanobacterial production: Potential and challenges. J. Paleolimnol. 2020, 64, 335–345. [Google Scholar] [CrossRef]
- Debret, M.; Sebag, D.; Desmet, M.; Balsam, W.; Copard, Y.; Mourier, B.; Susperrigui, A.-S.; Arnaud, F.; Bentaleb, I.; Chapron, E.; et al. Spectrocolorimetric interpretation of sedimentary dynamics: The new “Q7/4 diagram”. Earth Sci. Rev. 2011, 109, 1–19. [Google Scholar] [CrossRef] [Green Version]
- PAGES2k Consortium; Emile-Geay, J.; McKay, N.P.; Kaufman, D.S.; von Gunten, L.; Wang, J.; Anchukaitis, K.; Abram, N.; Addison, J.; Curran, M.A.; et al. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 2017, 4, 170088. [Google Scholar] [CrossRef]
- Ahmed, M.; Anchukaitis, K.J.; Asrat, A.; Borgaonkar, H.P.; Braida, M.; Buckley, B.M.; Büntgen, U.; Chase, B.M.; Christie, D.A.; Cook, E.R.; et al. Consortium Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [CrossRef]
- Von Gunten, L.; Grosjean, M.; Kamenik, C.; Fujak, M.; Urrutia, R. Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: Methods and case studies. J. Paleolimnol. 2012, 47, 583–600. [Google Scholar] [CrossRef] [Green Version]
- Saunders, K.; Grosjean, M.; Hodgson, D. A 950 yr temperature reconstruction from Duckhole Lake, southern Tasmania, Australia. Holocene 2013, 23, 771–783. [Google Scholar] [CrossRef]
- Amann, B.; Lobsiger, S.; Fischer, D.; Tylmann, W.; Bonk, A.; Filipiak, J.; Grosjean, M. Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907–2008. Glob. Planet. Chang. 2014, 123, 86–96. [Google Scholar] [CrossRef]
- Boldt, B.R.; Kaufman, D.S.; McKay, N.P.; Briner, J.P. Holocene summer temperature reconstruction from sedimentary chlorophyll content, with treatment of age uncertainties, Kurupa Lake, Arctic Alaska. Holocene 2015, 25, 641–650. [Google Scholar] [CrossRef]
- Saunders, K.; Kamenik, C.; Hodgson, D.; Hunziker, S.; Siffert, L.; Fischer, D.; Fujak, M.; Gibson, J.; Grosjean, M. Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts in the Southern Hemisphere westerly winds. Glob. Planet. Chang. 2012, 92-93, 82–91. [Google Scholar] [CrossRef]
- Sirocko, F.; Martínez-García, A.; Mudelsee, M.; Albert, J.; Britzius, S.; Christl, M.; Diehl, D.; Diensberg, B.; Friedrich, R.; Fuhrmann, F.; et al. Muted multidecadal climate variability in central Europe during cold stadial periods. Nat. Geosci. 2021, 14, 651–658. [Google Scholar] [CrossRef]
- Trachsel, M.; Grosjean, M.; Schnyder, D.; Kamenik, C.; Rein, B. Scanning reflectance spectroscopy (380–730 nm): A novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J. Paleolimnol. 2010, 44, 979–994. [Google Scholar] [CrossRef] [Green Version]
- De Jong, R.; Von Gunten, L.; Maldonado, A.; Grosjean, M. Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high-elevation Laguna Chepical, Chile (32 S). Clim. Past 2013, 9, 1921–1932. [Google Scholar] [CrossRef] [Green Version]
- Elbert, J.; Jacques-Coper, M.; Van Daele, M.; Urrutia, R.; Grosjean, M. A 600 years warm-season temperature record from varved sediments of Lago Plomo, Northern Patagonia, Chile (47 S). Quat. Int. 2015, 377, 28–37. [Google Scholar] [CrossRef]
- Makri, S.; Rey, F.; Gobet, E.; Gilli, A.; Tinner, W.; Grosjean, M. Early human impact in a 15,000-year high-resolution hyperspectral imaging record of paleoproduction and anoxia from a varved lake in Switzerland. Quat. Sci. Rev. 2020, 239, 106335. [Google Scholar] [CrossRef]
- Sorrel, P.; Jacq, K.; Van Exem, A.; Escarguel, G.; Dietre, B.; Debret, M.; McGowan, S.; Ducept, J.; Gauthier, E.; Oberhänsli, H. Evidence for centennial-scale Mid-Holocene episodes of hypolimnetic anoxia in a high-altitude lake system from central Tian Shan (Kyrgyzstan). Quat. Sci. Rev. 2020, 252, 106748. [Google Scholar] [CrossRef]
- Gassner, S.; Gobet, E.; Schwörer, C.; Van Leeuwen, J.; Vogel, H.; Giagkoulis, T.; Makri, S.; Grosjean, M.; Panajiotidis, S.; Hafner, A.; et al. 20,000 years of interactions between climate, vegetation and land use in Northern Greece. Veg. Hist. Archaeobotany 2019, 29, 75–90. [Google Scholar] [CrossRef]
- Saunders, K.M.; Roberts, S.; Perren, B.; Butz, C.; Sime, L.; Davies, S.; Van Nieuwenhuyze, W.; Grosjean, M.; Hodgson, D.A. Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing. Nat. Geosci. 2018, 11, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Zander, P.D.; Żarczyński, M.; Tylmann, W.; Rainford, S.-K.; Grosjean, M. Seasonal climate signals preserved in biochemical varves: Insights from novel high-resolution sediment scanning techniques. Clim. Past 2021, 17, 2055–2071. [Google Scholar] [CrossRef]
- Wienhues, G. Multi-Proxy Reconstruction of Holocene Environmental Change from Sediments of Lake Rzęśniki, Northeast Poland. Master’s Thesis, University of Bern, Bern, Switzerland, 2019. Available online: https://occrdata.unibe.ch/students/theses/msc/282.pdf (accessed on 8 January 2022).
- Sanchini, A.; Szidat, S.; Tylmann, W.; Vogel, H.; Wacnik, A.; Grosjean, M. A Holocene high-resolution record of aquatic productivity, seasonal anoxia and meromixis from varved sediments of Lake Łazduny, North-Eastern Poland: Insight from a novel multi-proxy approach. J. Quat. Sci. 2020, 35, 1070–1080. [Google Scholar] [CrossRef]
- Makri, S.; Lami, A.; Tu, L.; Tylmann, W.; Vogel, H.; Grosjean, M. Holocene phototrophic community and anoxia dynamics in meromictic Lake Jaczno (NE Poland) using high-resolution hyperspectral imaging and HPLC data. Biogeosciences 2021, 18, 1839–1856. [Google Scholar] [CrossRef]
- Tu, L.; Gilli, A.; Lotter, A.F.; Vogel, H.; Moyle, M.; Boyle, J.F.; Grosjean, M. The nexus among long-term changes in lake primary productivity, deep-water anoxia, and internal phosphorus loading, explored through analysis of a 15,000-year varved sediment record. Glob. Planet. Chang. 2021, 207, 103643. [Google Scholar] [CrossRef]
- Hächler, L. High-Resolution Record of Primary Productivity and Anoxia in the Context of the Environmental History of Lago di Mezzano. Master’s Thesis, University of Bern, Bern, Switzerland, 2021. Available online: https://occrdata.unibe.ch/students/theses/msc/354.pdf (accessed on 8 January 2022).
- Zander, P.D.; Żarczyński, M.; Vogel, H.; Tylmann, W.; Wacnik, A.; Sanchini, A.; Grosjean, M. A high-resolution record of Holocene primary productivity and water-column mixing from the varved sediments of Lake Żabińskie, Poland. Sci. Total Environ. 2021, 755, 143713. [Google Scholar] [CrossRef]
- Aymerich, I.F.; Oliva, M.; Giralt, S.; Martín-Herrero, J. Detection of Tephra Layers in Antarctic Sediment Cores with Hyperspectral Imaging. PLoS ONE 2016, 11, e0146578. [Google Scholar] [CrossRef] [Green Version]
- Van Exem, A.; Debret, M.; Copard, Y.; Verpoorter, C.; De Wet, G.; Lecoq, N.; Sorrel, P.; Werner, A.; Roof, S.; Laignel, B.; et al. New source-to-sink approach in an arctic catchment based on hyperspectral core-logging (Lake Linné, Svalbard). Quat. Sci. Rev. 2019, 203, 128–140. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7 Data: US Geological Survey Data Series 1035; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Rossel, R.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Bishop, J.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Shi, T.; Song, A.; Chen, Y.; Gao, W. Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods. Remote Sens. 2014, 6, 2699–2717. [Google Scholar] [CrossRef] [Green Version]
- Van Exem, A.; Debret, M.; Copard, Y.; Vannière, B.; Sabatier, P.; Marcotte, S.; Laignel, B.; Reyss, J.-L.; Desmet, M. Hyperspectral core logging for fire reconstruction studies. J. Paleolimnol. 2018, 59, 297–308. [Google Scholar] [CrossRef]
- Meyer, I.; Van Daele, M.; Fiers, G.; Verleyen, E.; De Batist, M.; Verschuren, D. Sediment reflectance spectroscopy as a paleo-hydrological proxy in East Africa. Limnol. Oceanogr. Methods 2017, 16, 92–105. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Nie, Y.; Sun, L. Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyllaconcentration in East Antarctic ponds. Polar Res. 2013, 32, 19932. [Google Scholar] [CrossRef]
- Axford, Y.; Briner, J.P.; Cooke, C.A.; Francis, D.R.; Michelutti, N.; Miller, G.H.; Smol, J.P.; Thomas, E.K.; Wilson, C.R.; Wolfe, A.P. Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc. Natl. Acad. Sci. USA 2009, 106, 18443–18446. [Google Scholar] [CrossRef] [Green Version]
- Tu, L.; Zander, P.; Szidat, S.; Lloren, R.; Grosjean, M. The influences of historic lake trophy and mixing regime changes on long-term phosphorus fraction retention in sediments of deep eutrophic lakes: A case study from Lake Burgäschi, Switzerland. Biogeosciences 2020, 17, 2715–2729. [Google Scholar] [CrossRef]
- Damsté, J.S.S.; Schouten, S. Biological markers for anoxia in the photic zone of the water column. In Handbook of Environmental Chemistry, Volume 2: Reactions and Processes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 127–163. ISBN 354028401X. [Google Scholar]
- Ji, J.; Balsam, W.; Shen, J.; Wang, M.; Wang, H.; Chen, J. Centennial blooming of anoxygenic phototrophic bacteria in Qinghai Lake linked to solar and monsoon activities during the last 18,000 years. Quat. Sci. Rev. 2009, 28, 1304–1308. [Google Scholar] [CrossRef]
- Yackulic, E. Productivity and Temperature Variability Over the Past 15000 Years at a Small Alpine Lake in the Southern San Juan Mountains, Colorado. Master’s Thesis, Northern Arizona University, Flagstaff, AZ, USA, 2017. Available online: https://www.proquest.com/openview/a0c52df4e9a27a31cbe311ca2bd6ef0a/1 (accessed on 8 January 2022).
- USGS Digital Spectral Library, splib06a. Available online: http://speclab.cr.usgs.gov/spectral-lib.html (accessed on 13 December 2017).
- Rein, B.; Lückge, A.; Sirocko, F. A major Holocene ENSO anomaly during the Medieval period. Geophys. Res. Lett. 2004, 31, 17211. [Google Scholar] [CrossRef]
- Arnold, G.E.; Foerster, V.; Trauth, M.H.; Lamb, H.; Schaebitz, F.; Asrat, A.; Szczech, C.; Günter, C. Advanced Hyperspectral Analysis of Sediment Core Samples from the Chew Bahir Basin, Ethiopian Rift, in the Spectral Range from 0.25 to 17 µm: Support for Climate Proxy Interpretation. Front. Earth Sci. 2021, 9, 500. [Google Scholar] [CrossRef]
- Chiaia-Hernández, A.C.; Zander, P.D.; Schneider, T.; Szidat, S.; Lloren, R.; Grosjean, M. High-Resolution Historical Record of Plant Protection Product Deposition Documented by Target and Nontarget Trend Analysis in a Swiss Lake under Anthropogenic Pressure. Environ. Sci. Technol. 2020, 54, 13090–13100. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, G.; Anderson, R.S.; Shuman, B.; Yackulic, E. Forest and lake dynamics in response to temperature, North American monsoon and ENSO variability during the Holocene in Colorado (USA). Quat. Sci. Rev. 2019, 211, 59–72. [Google Scholar] [CrossRef]
- Pedrotta, T.; Gobet, E.; Schwörer, C.; Beffa, G.; Butz, C.; Henne, P.D.; Morales-Molino, C.; Pasta, S.; van Leeuwen, J.F.N.; Vogel, H.; et al. 8,000 years of climate, vegetation, fire and land-use dynamics in the thermo-mediterranean vegetation belt of northern Sardinia (Italy). Veg. Hist. Archaeobotany 2021, 30, 789–813. [Google Scholar] [CrossRef]
- Żarczyński, M.; Tylmann, W.; Goslar, T. Multiple varve chronologies for the last 2000 years from the sediments of Lake Żabińskie (northeastern Poland)—Comparison of strategies for varve counting and uncertainty estimations. Quat. Geochronol. 2018, 47, 107–119. [Google Scholar] [CrossRef]
- Fritz, S.C.; Anderson, N.J. The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J. Paleolimnol. 2013, 49, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Heiri, O.; Ilyashuk, B.; Millet, L.; Samartin, S.; Lotter, A.F. Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region. Holocene 2014, 25, 137–149. [Google Scholar] [CrossRef]
- Wilhelm, B.; Rapuc, W.; Amann, B.; Anselmetti, F.S.; Arnaud, F.; Blanchet, J.; Brauer, A.; Czymzik, M.; Giguet-Covex, C.; Gilli, A.; et al. Impact of warmer climate periods on flood hazard in the European Alps. Nat. Geosci. 2022, 1–6. [Google Scholar] [CrossRef]
- Lowe, D.J. Tephrochronology and its application: A review. Quat. Geochronol. 2011, 6, 107–153. [Google Scholar] [CrossRef] [Green Version]
- Grimm, E.C. Coniss: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Henares, S.; Donselaar, M.E.; Bloemsma, M.; Tjallingii, R.; De Wijn, B.; Weltje, G. Quantitative integration of sedimentological core descriptions and petrophysical data using high-resolution XRF core scans. Mar. Pet. Geol. 2019, 110, 450–462. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rothwell, R.G. Future Developments and Innovations in High-Resolution Core Scanning. In Micro-XRF Studies of Sediment Cores; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 627–647. ISBN 9789401798495. [Google Scholar]
- Zander, P.D. The Varved Sediments of Lake Żabińskie, Poland as a High-Resolution Archive of Environmental Change. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2021. Available online: https://boristheses.unibe.ch/2780/ (accessed on 8 January 2022).
- Grosjean, M.; Amann, B.; Butz, C.; Rein, B.; Tylmann, W. Hyperspectral imaging: A novel, non-destructive method for investigating sub-annual sediment structures and composition. Past Glob. Chang. Mag. 2014, 22, 10–11. [Google Scholar] [CrossRef] [Green Version]
- Thrane, J.-E.; Kyle, M.; Striebel, M.; Haande, S.; Grung, M.; Rohrlack, T.; Andersen, T. Spectrophotometric Analysis of Pigments: A Critical Assessment of a High-Throughput Method for Analysis of Algal Pigment Mixtures by Spectral Deconvolution. PLoS ONE 2015, 10, e0137645. [Google Scholar] [CrossRef] [Green Version]
- Sanchini, A.; Grosjean, M. Quantification of chlorophyll a, chlorophyll b and pheopigments a in lake sediments through deconvolution of bulk UV–VIS absorption spectra. J. Paleolimnol. 2020, 64, 243–256. [Google Scholar] [CrossRef]
Parameter | Specim PFD4K-65-V10E | Specim Spectral Camera SWIR |
---|---|---|
Spectral range | 400–1000 nm | 1000–2500 nm |
Spectral sampling resolution | 0.78–6.27 nm | 5.6 nm |
Spatial resolution (pixel size) | 40–90 µm | 130–310 μm |
Field of view width | 50–120 mm | 50–120 mm |
Radiometric resolution (Bit) | 12 | 16 |
Index (Alternatives) | Proxy | Example Locations | Example References |
---|---|---|---|
RABD670 1 (RABA650–700; RABD655–685max; RABD670/Rmean, RABA630–700/R670) | Chloropigments a (aquatic production) | Lake Jaczno, Poland; Lake Lugano (Ponte Tresa basin), Switzerland | Butz et al., 2017 [12]; Schneider et al., 2018 [14] |
RABD845 (RABA750–900/R845) | Bacteriopheophytin a (water column anoxia) | Lake Jaczno, Poland; Lake Moossee, Switzerland | Butz et al., 2016 [13]; Makri et al., 2020 [43] |
RABD615 (RABA600–630/R615) | Phycoyanin (cyanobacteria) | Lake Son Kol, Kyrgyzstan | Sorrel et al., 2021 [44]; |
RABA1660–1690/R1670 | Aromatic organic matter (terrestrial organic matter) | Lake Son Kol, Kyrgyzstan | Sorrel et al., 2021 [44] |
R570/R630 1 (R590/R690) | Lithogenic material (chlorite, illite, biotite) | Lake Zazari, Greece | Gassner et al., 2020 [45] |
R850/R900 | Lithogenic material (Basaltic lithics) | Emerald Lake, Australia | Saunders et al., 2018 [46] |
Rmean | Unspecific; calcite | Lake Jaczno, Poland; Lake Żabińskie, Poland | Butz et al., 2017 [12]; Zander et al., 2021 [47] |
RMSE (μg/g) | R-sq | Slope (μg/Index) | Pigment Method | |||||
---|---|---|---|---|---|---|---|---|
Publication | Lake | Bphe a | TChl a | Bphe a | TChl a | Bphe a | TChl a | |
Butz et al., 2015 [6] | Jaczno, Poland | 3.0 | _ | 0.89 | _ | 644 | _ | HPLC |
Butz et al., 2017 [12] | Jaczno, Poland | _ | 36.8/ 20.1 | _ | 0.74/ 0.96 | _ | 2355/1428 | Spectrophoto-meter |
Schneider et al., 2018 [14] | Lugano (Ponte Tresa basin), Switzerland | _ | 123.2 | _ | 0.83 | _ | 454 | HPLC |
Wienhues, 2019 [48] | Rzęśniki, Poland | 18.8 | 26.8 | 0.87 | 0.78 | 1867 | 1118 | HPLC |
Sanchini et al., 2020 [49] | Łazduny, Poland | 24.0 | 103.5 | 0.89 | 0.89 | 761 | 2132 | Spectrophoto-meter |
Makri et al., 2020 [43] | Moossee, Switzerland | 3.2 | 188.7 | 0.92 | 0.87 | 964 | 6949 | Spectrophoto-meter |
Makri et al., 2021 [50] | Jaczno, Poland | 3.1 | 22.0 | 0.95 | 0.91 | 680 | 1558 | Spectrophoto-meter |
Tu et al., 2021 [51] | Soppensee, Switzerland | 15.9 | 40.4 | 0.96 | 0.84 | 787 | 1538 | Spectrophoto-meter |
Hächler, 2021 [52] | Mezzano, Italy | 3.4 | 47.3 | 0.69 | 0.79 | 509 | 1528 | Spectrophoto-meter |
Zander et al., 2021 [53] | Żabińskie, Poland | 5.7 | 77.1 | 0.80 | 0.93 | 861 | 1558 | Spectrophoto-meter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zander, P.D.; Wienhues, G.; Grosjean, M. Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments. J. Imaging 2022, 8, 58. https://doi.org/10.3390/jimaging8030058
Zander PD, Wienhues G, Grosjean M. Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments. Journal of Imaging. 2022; 8(3):58. https://doi.org/10.3390/jimaging8030058
Chicago/Turabian StyleZander, Paul D., Giulia Wienhues, and Martin Grosjean. 2022. "Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments" Journal of Imaging 8, no. 3: 58. https://doi.org/10.3390/jimaging8030058
APA StyleZander, P. D., Wienhues, G., & Grosjean, M. (2022). Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments. Journal of Imaging, 8(3), 58. https://doi.org/10.3390/jimaging8030058