Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Contribution
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Image Processing in R
3.2.1. Information Retrieval and Spatial Statistics
Listing 1: Unix shell script by GDAL and echo-grep utilities to inspect the geometry of Landsat TIFs. |
3.2.2. Spectral Bands for Colour Composites
Listing 2: R code used for inspecting the information and statistics on the Landsat 8-9 OLI bands. |
|
Listing 3: R code for plotting the 11 original individual layers (raw bands) of the Landsat-9 multi-spectral images as grayscale bitmap images. |
Listing 4: R code for subsetting the large files using SpatRaster object. |
Listing 5: R code for inspecting the correlation between the selected Landsat bands. |
Listing 6: R code used for plotting the color composites for bands of the satellite image. |
|
Listing 7: R code used for computing vegetation indices from bands of the satellite image. |
|
3.3. Terrain Analysis in Python
Listing 8: Python code (1) used for plotting DEM in Figure 2. |
Listing 9: Python code (2) used for plotting hillshade in Figure 3. |
Listing 10: Python code used for plotting the hillshade with changed azimuth and Sun angle values for Figure 4 and Figure 5. |
|
4. Results and Discussion
4.1. Color Composites
4.2. Computing Vegetation Indices
4.2.1. Normalized Difference Vegetation Index (NDVI)
4.2.2. Soil-Adjusted Vegetation Index (SAVI)
4.2.3. Enhanced Vegetation Index 2 (EVI2)
4.2.4. Atmospherically Resistant Vegetation Index 2 (ARVI2)
4.3. Terrain Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARVI | Atmospherically Resistant Vegetation Index |
CPT | Colour palette table |
CRS | Coordinate reference system |
DCW | Digital Chart of the World |
DEM | Digital elevation model |
DN | Digital number |
DTM | Digital terrain model |
EVI | Enhanced Vegetation Index |
GEBCO | General Bathymetric Chart of the Oceans |
GDAL | Geospatial Data Abstraction Library |
GIS | Geographic information system |
GloVis | Global Visualization Viewer |
GMT | Generic Mapping Tools |
GPS | Global positioning system |
GUI | Graphical User Interface |
Landsat 8-9 OLI/TIRS | Landsat 8-9 Operational Land Imager and Thermal Infrared Sensor |
Landsat TM | Landsat Thematic Mapper |
Landsat ETM+ | Landsat Enhanced Thematic Mapper Plus |
LiDAR | Light Detection and Ranging |
ML | Machine Learning |
MODIS | Moderate Resolution Imaging Spectroradiometers |
MNDWI | Modified Normalized Difference Water Index |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NGA | National Geospatial-Intelligence Agency |
NIR | Near Infrared |
RGB | Red Green Blue |
RS | Remote sensing |
SAGA | System for Automated Geoscientific Analyses |
SAVI | Soil-Adjusted Vegetation Index |
SPOT | Satellite pour l’Observation de la Terre |
SRTM | Shuttle Radar Topography Mission |
SWIR | Short-wave infrared |
3D | Three-dimensional |
TIFF | Tagged Image File Format |
USGS | United States Geological Survey |
WRI | Water Ratio Index |
References
- Coulibaly, L.K.; Guan, Q.; Assoma, T.V.; Fan, X.; Coulibaly, N. Coupling linear spectral unmixing and RUSLE2 to model soil erosion in the Boubo coastal watershed, Côte d’Ivoire. Ecol. Indic. 2021, 130, 108092. [Google Scholar] [CrossRef]
- Koné, M.; Coulibaly, L.; Kouadio, Y.L.; Neuba, D.F.; Malan, D.F. Multitemporal monitoring of the forest cover in Côte d’Ivoire from the 1960s to the 2000s, using Landsat satellite images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1325–1328. [Google Scholar] [CrossRef]
- Lemenkova, P. Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning by SAGA GIS. Transylv. Rev. Syst. Ecol. Res. 2020, 22, 17–34. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Li, X. Down scaling vegetation fraction by fusing multi-temporal MODIS and Landsat data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, USA, 13–18 July 2014; pp. 757–760. [Google Scholar] [CrossRef]
- Lemenkova, P. Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: A Case Study of Northern Iceland. Adv. Res. Life Sci. 2020, 4, 70–78. [Google Scholar] [CrossRef]
- Wang, H.; Hajnsek, I.; Kinzelbach, W. Calibrated Landsat TM LAI retrieval for monitoring vegetation cover change after ecological releases to the lower Tarim river. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6279–6282. [Google Scholar] [CrossRef]
- Tagnon, B.O.; Assoma, V.T.; Mangoua, J.M.O.; Douagui, A.G.; Kouamé, F.K.; Savané, I. Contribution of SAR/RADARSAT-1 and ASAR/ENVISAT images to geological structural mapping and assessment of lineaments density in Divo-Oume area (Côte d’Ivoire). Egypt. J. Remote Sens. Space Sci. 2020, 23, 231–241. [Google Scholar] [CrossRef]
- Lees, R.D.; Lettis, W.R.; Bernstein, R. Evaluation of Landsat thematic mapper imagery for geologic applications. Proc. IEEE 1985, 73, 1108–1117. [Google Scholar] [CrossRef]
- Ngom, N.M.; Mbaye, M.; Baratoux, D.; Baratoux, L.; Ahoussi, K.E.; Kouame, J.K.; Faye, G.; Sow, E.H. Recent expansion of artisanal gold mining along the Bandama River (Côte d’Ivoire). Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102873. [Google Scholar] [CrossRef]
- Jessell, M.; Santoul, J.; Baratoux, L.; Youbi, N.; Ernst, R.E.; Metelka, V.; Miller, J.; Perrouty, S. An updated map of West African mafic dykes. J. Afr. Earth Sci. 2015, 112, 440–450. [Google Scholar] [CrossRef]
- Siagné, Z.H.; Aïfa, T.; Kouamelan, A.N.; Houssou, N.N.; Digbeu, W.; Kakou, B.K.F.; Couderc, P. New lithostructural map of the Doropo region, northeast Côte d’Ivoire: Insight from structural and aeromagnetic data. J. Afr. Earth Sci. 2022, 196, 104680. [Google Scholar] [CrossRef]
- Sharma, M.; Garg, R.D.; Badenko, V.; Fedotov, A.; Min, L.; Yao, A. Potential of airborne LiDAR data for terrain parameters extraction. Quat. Int. 2021, 575-576, 317–327. [Google Scholar] [CrossRef]
- Kulkarni, S.; Chandrashekaraiah, M.S.R. 3D Annotation Tool Using LiDAR. In Proceedings of the 2019 Global Conference for Advancement in Technology (GCAT), Bangaluru, India, 18–20 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Moffatt, A.; Platt, E.; Mondragon, B.; Kwok, A.; Uryeu, D.; Bhandari, S. Obstacle Detection and Avoidance System for Small UAVs using a LiDAR. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 633–640. [Google Scholar] [CrossRef]
- Yeh, C.H.; Lin, M.L.; Chan, Y.C.; Chang, K.J.; Hsieh, Y.C. Dip-slope mapping of sedimentary terrain using polygon auto-tracing and airborne LiDAR topographic data. Eng. Geol. 2017, 222, 236–249. [Google Scholar] [CrossRef]
- Montreuil, A.L.; Chen, M.; Moelans, R.; Dierckx, W.; Houthuys, R.; Klein, A.P.; Bogaert, P. Monitoring Intertidal Bars and 3D Coastal Mapping Using an Automatic Algorithm on a Lidar Dataset. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8604–8607. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Macrander, H.; Atkinson, L.; Thomas, T.; Lopez, M.A. GPU-based lightweight parallel processing toolset for LiDAR data for terrain analysis. Environ. Model. Softw. 2019, 117, 55–68. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models. Remote Sens. Appl. Soc. Environ. 2022, 27, 100817. [Google Scholar] [CrossRef]
- Yuan, W.; Choi, D.; Bolkas, D. GNSS-IMU-assisted colored ICP for UAV-LiDAR point cloud registration of peach trees. Comput. Electron. Agric. 2022, 197, 106966. [Google Scholar] [CrossRef]
- Singhai, J.; Rawat, P. Image enhancement method for underwater, ground and satellite images using brightness preserving histogram equalization with maximum entropy. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Sivakasi, India, 13–15 December 2007; Volume 3, pp. 507–512. [Google Scholar] [CrossRef]
- Yasuda, A.; Yamashita, K.; Ruan, Z.; Lu, Y. Evaluation of brightness resolution of WEFAX images transmitted through GMS. In Proceedings of the IGARSS ’93—IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; Volume 4, pp. 1969–1971. [Google Scholar] [CrossRef]
- Prudyus, I.; Lazko, L.; Semenov, S. Satellite images quality improvement for multilevel data processing. In Proceedings of the 2010 International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), Lviv, Ukraine, 23–27 February 2010; pp. 56–58. [Google Scholar]
- Kita, Y. A study of change detection from satellite images using joint intensity histogram. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Piscataway, NJ, USA, 8–11 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Suresh, G.; Hovenbitzer, M. Texture and Intensity Based Land Cover Classification in Germany from Multi-Orbit & Multi-Temporal Sentinel-1 Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 826–829. [Google Scholar] [CrossRef]
- Yang, S.; Hung, C.C. Texture classification in remotely sensed images. In Proceedings of the IEEE SoutheastCon 2002 (Cat. No.02CH37283), Valencia, Spain, 5–7 April 2002; pp. 62–66. [Google Scholar] [CrossRef]
- Lakshmanan, V.; DeBrunner, V.; Rabin, R. Texture-based segmentation of satellite weather imagery. In Proceedings of the 2000 International Conference on Image Processing (Cat. No.00CH37101), Vancouver, BC, Canada, 10–13 September 2000; Volume 2, pp. 732–735. [Google Scholar] [CrossRef] [Green Version]
- Jun, X.; Tingting, S. Study on Super-Resolution of Images Obtained by Micro Satellite with CMOS Sensor. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 907–910. [Google Scholar] [CrossRef]
- Perin, V.; Tulbure, M.G.; Gaines, M.D.; Reba, M.L.; Yaeger, M.A. On-farm reservoir monitoring using Landsat inundation datasets. Agric. Water Manag. 2021, 246, 106694. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Alikas, K.; Anstee, J.; Barbosa, C.; Binding, C.; Bresciani, M.; Cremella, B.; Giardino, C.; Gurlin, D.; et al. Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 2022, 270, 112860. [Google Scholar] [CrossRef]
- Lemenkova, P. Robust Vegetation Detection Using RGB Colour Composites and Isoclust Classification of the Landsat TM Image. Geomat. Landmanag. Landsc. 2021, 4, 147–167. [Google Scholar] [CrossRef]
- Abu, I.O.; Szantoi, Z.; Brink, A.; Robuchon, M.; Thiel, M. Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas. Ecol. Indic. 2021, 129, 107863. [Google Scholar] [CrossRef]
- Attoumane, A.; Stéphanie, D.S.; Kacou, M.; André, A.D.; Karamoko, A.W.; Seguis, L.; Zahiri, E.P. Individual perceptions on rainfall variations versus precipitation trends from satellite data: An interdisciplinary approach in two socio-economically and topographically contrasted districts in Abidjan, Côte d’Ivoire. Int. J. Disaster Risk Reduct. 2022, 81, 103285. [Google Scholar] [CrossRef]
- Masolele, R.N.; De Sy, V.; Herold, M.; Marcos, D.; Verbesselt, J.; Gieseke, F.; Mullissa, A.G.; Martius, C. Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series. Remote Sens. Environ. 2021, 264, 112600. [Google Scholar] [CrossRef]
- Luo, X.; Xu, S. Forest Mapping from Hyperspectral Image Using Deep Belief Network. In Proceedings of the 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 11–13 December 2019; pp. 395–398. [Google Scholar] [CrossRef]
- Martins, V.S.; Roy, D.P.; Huang, H.; Boschetti, L.; Zhang, H.K.; Yan, L. Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope. Remote Sens. Environ. 2022, 280, 113203. [Google Scholar] [CrossRef]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef] [Green Version]
- Dobesova, Z.; Dobes, P. Comparison of visual languages in Geographic Information Systems. In Proceedings of the 2012 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Innsbruck, Austria, 30 September–4 October 2012; pp. 245–246. [Google Scholar] [CrossRef]
- Ellefsen, K.L.; Lock, J.T.; Settle, B.; Karsten, C.A.; Parker, I. Applications of FLIKA, a Python-based image processing and analysis platform, for studying local events of cellular calcium signaling. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2019, 1866, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Lemenkova, P. Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. Data 2022, 7, 74. [Google Scholar] [CrossRef]
- Zhang, M.; Yue, P.; Guo, X. GIScript: Towards an interoperable geospatial scripting language for GIS programming. In Proceedings of the 2014 The Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Lemenkova, P. Cartographic scripts for seismic and geophysical mapping of Ecuador. Geografie 2022, 127, 1–24. [Google Scholar] [CrossRef]
- Shi, X. Python for Internet GIS Applications. Comput. Sci. Eng. 2007, 9, 56–59. [Google Scholar] [CrossRef]
- De Sarkar, A.; Biyahut, N.; Kritika, S.; Singh, N. An environment monitoring interface using GRASS GIS and Python. In Proceedings of the 2012 Third International Conference on Emerging Applications of Information Technology, Kolkata, India, 16–18 April 2012; pp. 235–238. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, X.; Xie, Z. A middleware: Python plugin transform on different GIS platforms. In Proceedings of the 2015 23rd International Conference on Geoinformatics, Wuhan, China, 19–21 June 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Silva, A.; Lotufo, R.; Machado, R.; Saude, A. Toolbox of image processing using the Python language. In Proceedings of the 2003 International Conference on Image Processing (Cat. No.03CH37429), Seville, Spain, 14–17 September 2003; Volume 3, p. 1049. [Google Scholar] [CrossRef]
- Rey, S.J.; Anselin, L. PySAL: A Python Library of Spatial Analytical Methods. Rev. Reg. Stud. 2010, 37, 5–27. [Google Scholar] [CrossRef]
- Rey, S.J.; Anselin, L. PySAL: A Python Library of Spatial Analytical Methods. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 175–193. [Google Scholar] [CrossRef]
- de Deus Filho, J.C.A.; da Silva Nunes, L.C.; Xavier, J.M.C. iCorrVision-2D: An integrated python-based open-source Digital Image Correlation software for in-plane measurements (Part 1). SoftwareX 2022, 19, 101131. [Google Scholar] [CrossRef]
- Farrens, S.; Grigis, A.; El Gueddari, L.; Ramzi, Z.; Chaithya, G.R.; Starck, S.; Sarthou, B.; Cherkaoui, H.; Ciuciu, P.; Starck, J.L. PySAP: Python Sparse Data Analysis Package for multidisciplinary image processing. Astron. Comput. 2020, 32, 100402. [Google Scholar] [CrossRef]
- Gao, S.; Bilskie, M.V.; Hagen, S.C. PyVF: A python program for extracting vertical features from LiDAR-DEMs. Environ. Model. Softw. 2022, 157, 105503. [Google Scholar] [CrossRef]
- Dănilă, M.N.; Cazacu, M.M.; Gurlui, S. Python utility: Laser-atmosphere interaction extended to network data management. In Proceedings of the 2012 5th Romania Tier 2 Federation Grid, Cloud & High Performance Computing Science (RQLCG), Cluj-Napoca, Romania, 25 October 2012; pp. 90–92, INSPEC Accession No: 13579885. [Google Scholar]
- Roberts, J.F.; Mwangi, R.; Mukabi, F.; Njui, J.; Nzioka, K.; Ndambiri, J.K.; Bispo, P.C.; Espirito-Santo, F.D.B.; Gou, Y.; Johnson, S.C.M.; et al. Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning. Comput. Geosci. 2022, 167, 105192. [Google Scholar] [CrossRef]
- Chen, C.; Judge, J.; Hulse, D. PyLUSAT: An open-source Python toolkit for GIS-based land use suitability analysis. Environ. Model. Softw. 2022, 151, 105362. [Google Scholar] [CrossRef]
- Wasser, L.; Joseph, M.B.; McGlinchy, J.; Palomino, J.; Korinek, N.; Holdgraf, C.; Head, T.D. EarthPy: A Python package that makes it easier to explore and plot raster and vector data using open source Python tools. J. Open Source Softw. 2019, 4, 1886. [Google Scholar] [CrossRef] [Green Version]
- Stančin, I.; Jović, A. An overview and comparison of free Python libraries for data mining and big data analysis. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 977–982. [Google Scholar] [CrossRef]
- Debeir, O.; Decaestecker, C. Data augmentation for training deep regression for in vitro cell detection. In Proceedings of the 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), Tripoli, Lebanon, 17–19 October 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Debeir, O.; Adanja, I.; Warzee, N.; Van Ham, P.; Decaestecker, C. Phase contrast image segmentation by weak watershed transform assembly. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 724–727. [Google Scholar] [CrossRef]
- Vangara, V.K.M.; Vuddanti, S.; Kakani, B. An Accurate and Fast Computational Python Based Module for Linear Regression Analysis in Data Science Applications. In Proceedings of the 2021 IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT), Visakhapatnam, India, 13–14 November 2021; pp. 167–170. [Google Scholar] [CrossRef]
- Ahmed, R.; Mahmud, K.H.; Tuya, J.H. A GIS-Based Mathematical Approach for Generating 3D Terrain Model from High-Resolution UAV Imageries. J. Geovisualization Spat. Anal. 2021, 5, 24. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Chi, G.; Yin, J.; Oravecz, Z.; Bodovski, Y.; Friedman, N.P.; Vrieze, S.I.; Chow, S.M. GPS2space: An Open-source Python Library for Spatial Measure Extraction from GPS Data. J. Behav. Data Sci. 2021, 1, 127–155. [Google Scholar] [CrossRef]
- Jovanov, S.; Naumoski, A. A GIS-based Mapping of Mountain Peaks, Waterfalls and Mountain Lodges in North Macedonia. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 22–24 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Mogaji, K.A.; Atenidegbe, O.F.; Adeyemo, I.A.; Akinmulewo, K.P. Application of GIS-based PROMETHEE data mining technique to geoelectrical-derived parameters for aquifer potentiality assessment in a typical hardrock terrain Southwestern Nigeria. Sustain. Water Resour. Manag. 2022, 8, 51. [Google Scholar] [CrossRef]
- Ma, X.; Longley, I.; Salmond, J.; Gao, J. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python. Front. Environ. Sci. Eng. 2020, 14, 44. [Google Scholar] [CrossRef]
- Dobesova, Z. Programming language Python for data processing. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 4866–4869. [Google Scholar] [CrossRef]
- Jaskolka, K.; Seiler, J.; Beyer, F.; Kaup, A. A Python-based laboratory course for image and video signal processing on embedded systems. Heliyon 2019, 5, e02560. [Google Scholar] [CrossRef] [Green Version]
- Bastidas, J.M.P.; Auras, S.V.; Juurlink, L.B.F. A Python script to automate STM image analysis for stepped surfaces. Appl. Surf. Sci. 2021, 567, 150821. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Murrell, P. R Graphics, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Chung, T.D.; Ibrahim, R.; Hassan, S.M.; Rosli, N.S. Fast approach for automatic data retrieval using R programming language. In Proceedings of the 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Ipoh, Malaysia, 25–27 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lemenkova, P. Tanzania Craton, Serengeti Plain and Eastern Rift Valley: Mapping of geospatial data by scripting techniques. Est. J. Earth Sci. 2022, 71, 61–79. [Google Scholar] [CrossRef]
- Al-Amin, S.T.; Uday Sampreeth Chebolu, S.; Ordonez, C. Extending the R Language with a Scalable Matrix Summarization Operator. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 399–405. [Google Scholar] [CrossRef]
- Lemenkova, P. A Script-Driven Approach to Mapping Satellite-Derived Topography and Gravity Data Over the Zagros Fold-and-Thrust Belt, Iran. Artif. Satell. 2022, 57, 110–137. [Google Scholar] [CrossRef]
- Wang, D.; Wei, H.; Bai, B. Teaching Design and Implementation Based on R Language Under the Background of Big Data. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 49–52. [Google Scholar] [CrossRef]
- Malviya, A.; Udhani, A.; Soni, S. R-tool: Data analytic framework for big data. In Proceedings of the 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India, 18–19 March 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, S. The Design of Medical English Autonomous Guiding Platform under the Information Technology Environment-Based on R Language. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1584–1587. [Google Scholar] [CrossRef]
- Lin, H.; Yang, S.; Midkiff, S.P. RABID—A General Distributed R Processing Framework Targeting Large Data-Set Problems. In Proceedings of the 2013 IEEE International Congress on Big Data, Santa Clara, CA, USA, 27 June–2 July 2013; pp. 423–424. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Y.; Duan, Q.; Zhang, M.; Xu, B. Prediction model of glutamic acid production of data mining based on R language. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 6806–6810. [Google Scholar] [CrossRef]
- Lemenkova, P. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geod. Cartogr. 2019, 45, 57–84. [Google Scholar] [CrossRef] [Green Version]
- Mao, A. Construction of Intelligent Vocational Management Information System with R Programming. In Proceedings of the 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 1–3 December 2021; pp. 1162–1165. [Google Scholar] [CrossRef]
- Bishwal, R.M. Potential use of R-statistical programming in the field of geoscience. In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Pune, India, 8–9 April 2017; pp. 979–982. [Google Scholar] [CrossRef]
- Frery, A.C.; Wu, J.; Gomez, L. Elements of Data Analysis and Image Processing with R. In SAR Image Analysis—A Computational Statistics Approach: With R Code, Data, and Applications; Willey: Hoboken, NJ, USA, 2022; pp. 43–60. [Google Scholar] [CrossRef]
- Ramalakshmi, E.; Kompala, N. Multi-threading image processing in single-core and multi-core CPU using R language. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Erode, India, 22–24 February 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Chatelain, C.; Bakayoko, A.; Martin, P.; Gautier, L. Monitoring tropical forest fragmentation in the Zagné-Taï area (west of Taï National Park, Côte d’Ivoire). Biodivers. Conserv. 2010, 19, 2405–2420. [Google Scholar] [CrossRef]
- Hennenberg, K.J.; Orthmann, B.; Steinke, I.; Porembski, S. Core area analysis at semi-deciduous forest islands in the Comoé National Park, NE Ivory Coast. Biodivers. Conserv. Vol. 2008, 17, 2787–2797. [Google Scholar] [CrossRef]
- El-Shahat, S.; El-Zafarany, A.M.; El Seoud, T.A.; Ghoniem, S.A. Vulnerability assessment of African coasts to sea level rise using GIS and remote sensing. Environ. Dev. Sustain. 2021, 23, 2827–2845. [Google Scholar] [CrossRef]
- Tang, W.; Feng, W.; Jia, M.; Shi, J.; Zuo, H.; Trettin, C.C. The assessment of mangrove biomass and carbon in West Africa: A spatially explicit analytical framework. Wetl. Ecol. Manag. 2016, 24, 153–171. [Google Scholar] [CrossRef]
- Affian, K.; Robin, M.; Maanan, M.; Digbehi, B.; Djagoua, E.V.; Kouamé, F. Heavy metal and polycyclic aromatic hydrocarbons in Ebrié lagoon sediments, Côte d’Ivoire. Environ. Monit. Assess. 2009, 159, 531. [Google Scholar] [CrossRef]
- Msiska, O.V. Lakes and Reservoirs of Africa: South of Sahara. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: Oxford, UK, 2009; pp. 487–500. [Google Scholar] [CrossRef]
- Thomasset. La Côte d’Ivoire. Ann. GéOgraphie 1900, 9, 159–172. [Google Scholar] [CrossRef]
- Rougerie, G. Façonnement actuel des modèles en Cote d’Ivoire forestière. L’Inform. Géograph. 1959, 23, 135–136. [Google Scholar]
- Tricart, J. Le café en Côte d’Ivoire. Cah. D’Outre-Mer 1957, 39, 209–233. [Google Scholar] [CrossRef]
- Bruno, L. Coup de cacao en Côte d’Ivoire. Crit. Int. 2000, 9, 6–14. [Google Scholar] [CrossRef]
- De Planhol, X. Le cacao en Côte d’Ivoire: Étude de géographie régionale. L’Inform. Géograph. 1947, 11, 50–57. [Google Scholar] [CrossRef]
- Smith Dumont, E.; Gnahoua, G.M.; Ohouo, L.; Sinclair, F.L.; Vaast, P. Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor. Syst. 2014, 88, 1047–1066. [Google Scholar] [CrossRef] [Green Version]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim. Chang. 2013, 119, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Sawadogo, A. La stratégie du développement de l’agriculture en Côte-d’Ivoire. Bull. L’Assoc. Géograph. Français 1974, 415–416, 87–103. [Google Scholar] [CrossRef]
- Pélissier, P. Agriculture et développement l’exemple de la Côte-d’Ivoire. Bull. L’Assoc. Géograph. Français 1974, 415-416, 81–85. [Google Scholar] [CrossRef]
- Sako, A.; Semdé, S.; Wenmenga, U. Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. J. Afr. Earth Sci. 2018, 145, 297–316. [Google Scholar] [CrossRef]
- Sauerwein, T. Gold mining and development in Côte d’Ivoire: Trajectories, opportunities and oversights. Land Use Policy 2020, 91, 104323. [Google Scholar] [CrossRef]
- Murray, S.; Torvela, T.; Bills, H. A geostatistical approach to analyzing gold distribution controlled by large-scale fault systems—An example from Côte d’Ivoire. J. Afr. Earth Sci. 2019, 151, 351–370. [Google Scholar] [CrossRef]
- Sournia, G. Aménagement du territoire et stratégie du développement en Côte-d’Ivoire. L’information Géographique 2003, 67, 124–129. [Google Scholar] [CrossRef]
- Chatelain, C.; Gautier, L.; Spichiger, R. A recent history of forest fragmentation in southwestern Ivory Coast. Biodivers. Conserv. 1996, 5, 37–53. [Google Scholar] [CrossRef]
- Denguéadhé Kolongo, T.S.; Decocq, G.; Yao, C.Y.A.; Blom, E.C.; Van Rompaey, R.S.A.R. Plant Species Diversity in the Southern Part of the Taï National Park (Côte d’Ivoire). Biodivers. Conserv. 2006, 15, 2123–2142. [Google Scholar] [CrossRef]
- Yeo, K.; Delsinne, T.; Konate, S.; Alonso, L.L.; Aïdara, D.; Peeters, C. Diversity and distribution of ant assemblages above and below ground in a West African forest-savannah mosaic (Lamto, Côte d’Ivoire). Insectes Sociaux 2017, 64, 155–168. [Google Scholar] [CrossRef]
- Dubresson, A. Industrialisation et urbanisation en Côte-d’Ivoire. Contribution géographique à l’étude de l’accumulation urbaine. L’Inform. Géograph. 2003, 67, 130–133. [Google Scholar] [CrossRef]
- Chaléard, J.L. Temps des villes, temps des vivres. L’essor du vivrier marchand en Côte d’Ivoire. L’Inform. Géograph. 1995, 59, 42–43. [Google Scholar]
- Cotten, A.M. Un aspect de l’urbanisation en Côte-d’Ivoire. Cahiers D’outre-mer 1974, 106, 183–193. [Google Scholar] [CrossRef]
- Cotten, A.M. Le rôle des villes moyennes en Côte-d’Ivoire. Bull. L’Inform. Géograph. Français 1973, 410, 619–625. [Google Scholar] [CrossRef]
- Cotten, A.M. Développement des transports en République de Côte d’Ivoire Ses conséquences géographiques. Trav. l’Inst. Géograph. Reims 1985, 63-64, 85–94. [Google Scholar] [CrossRef]
- Doumouya, I.; Dibi, B.; Kouame, K.I.; Saley, B.; Jourda, J.P.; Savane, I.; Biemi, J. Modelling of favourable zones for the establishment of water points by geographical information system (GIS) and multicriteria analysis (MCA) in the Aboisso area (South-east of Côte d’Ivoire). Environ. Earth Sci. 2012, 67, 1763–1780. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Landsat—Earth Observation Satellites; Technical Report; USGS: Asheville, NC, USA, 2015. [CrossRef] [Green Version]
- Department of the Interior U.S. Geological Survey. Landsat 9 Data Users Handbook; LSDS-2082 Version 1.0; EROS: Sioux Falls, SD, USA, 2022.
- GEBCO Compilation Group. GEBCO 2020 Grid. 2020. Available online: https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (accessed on 13 October 2022).
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Lemenkova, P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences 2022, 12, 140. [Google Scholar] [CrossRef]
- Lemenkova, P. Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from TerraClimate. ISPRS Int. J. Geo. Inf. 2022, 11, 473. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Bivand, R.; Forner, K.; Ooms, J.; Pebesma, E.; Sumner, M.D. Package ‘Terra’; Maintainer: Vienna, Austria, 2022. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 2.6-7. 2017. Available online: https://CRAN.R-project.org/package=raster (accessed on 13 October 2022).
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R Package Version 1.1-2. 2014. Available online: https://CRAN.R-project.org/package=RColorBrewer (accessed on 13 October 2022).
- Volesky, J.C.; Stern, R.J.; Johnson, P.R. Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Res. 2003, 123, 235–247. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis. An Introduction, 5th ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Deoli, V.; Kumar, D.; Kuriqi, A. Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data. Sensors 2022, 22, 6176. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Gillies, S. Rasterio: Geospatial Raster I/O for Python Programmers. 2013. Available online: https://rasterio.readthedocs.io/en/latest/ (accessed on 13 October 2022).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Plotly Technologies Inc. Collaborative Data Science; Plotly Technologies Inc.: Montreal, QC, USA, 2015. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication; NASA: Washington, DC, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Avand, M.; Kuriqi, A.; Khazaei, M.; Ghorbanzadeh, O. DEM resolution effects on machine learning performance for flood probability mapping. J. Hydrol. Environ. Res. 2022, 40, 1–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenkova, P.; Debeir, O. Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa. J. Imaging 2022, 8, 317. https://doi.org/10.3390/jimaging8120317
Lemenkova P, Debeir O. Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa. Journal of Imaging. 2022; 8(12):317. https://doi.org/10.3390/jimaging8120317
Chicago/Turabian StyleLemenkova, Polina, and Olivier Debeir. 2022. "Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa" Journal of Imaging 8, no. 12: 317. https://doi.org/10.3390/jimaging8120317
APA StyleLemenkova, P., & Debeir, O. (2022). Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa. Journal of Imaging, 8(12), 317. https://doi.org/10.3390/jimaging8120317