Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity
Abstract
:1. Introduction
- The comprehensive review of related literature on salient object detection methods and approaches to demonstrate trends, uniqueness, recency, and relevance of the current study.
- The construction of a novel bottom-up saliency computation method that exploits the strategy of color contrast, contrast ratio, center prior, and spatial feature to obtain a robust salient object detection process.
- The intensive experimental comparison with different prominent salient object detection methods that were reported in the literature to determine the effectiveness of the proposed method.
2. Review of Literature
2.1. Bottom-Up Saliency Detection Methods
2.1.1. Local Contrast-Based Saliency Detection
2.1.2. Global Contrast-Based Saliency Detection
2.1.3. Graph-Based Saliency Detection
2.1.4. Supervised Learning Saliency Detection
2.2. Saliency Methods for Challenging Image Categories
2.3. Deep Learning Saliency Detection Methods
2.4. Unit of Processing
2.4.1. Pixel-Based Saliency Detection
2.4.2. Region-Based Saliency Detection
3. Methods
3.1. Segmentation of Input Image
3.1.1. Color Quantization
3.1.2. Region Generation
3.2. Calculation of Region Saliency
3.3. Post-Processing of Saliency Map
4. Experimental Results
4.1. Datasets
4.2. Methods Compared
Bottom-Up Saliency Methods | |||
---|---|---|---|
No | Method | Approach and Prior Knowledge | Unit of Processing |
1 | FES [54] | Center-surroundedness contrast, center prior | Pixel |
2 | IT [61] | Center-surroundedness, intensity, color, and orientation contrast | |
3 | GB [64] | Graph-based, center-surroundedness activation map | |
4 | SeR [73] | Local steering kernel features and color features | |
5 | SEG [74] | Local feature contrast, boundary prior | |
6 | SR [139] | Spectral residual approach | |
7 | AC [15] | Center surroundedness color contrast prior | Patch/Block |
8 | CA [25] | Global, and local features, context prior, center Prior | |
9 | SWD [97] | Center prior, color dissimilarity, spatial distance | |
10 | COV [98] | Local color contrast, center prior | |
11 | SUN [100] | The local intensity and color features, feature space | |
12 | MRBF [7] | Boundary connectivity, foreground prior | Region by SLIC algorithm |
13 | DCLC [36] | Diffusion-based using manifold ranking, compactness local contrast, center prior | |
14 | MCVS [44] | Background prior, foreground prior, and contrast features | |
15 | CSV [56] | Global color spatial distribution, object position prior | |
16 | HDCT [67] | Learning-based approach, global and local color contrast features, location, histogram, texture, and shape features | |
17 | FCB [68] | Foreground and background cues, center prior | |
18 | MC [80] | Boundary prior, graph-based, Markov random walk | |
19 | MR [83] | Boundary prior, graph-based manifold ranking | |
20 | DGL [84] | Graph-based, boundary prior | |
21 | FBSS [94] | Boundary, texture, color, and contrast priors | |
22 | DSR [106] | Background prior | |
23 | MAP [108] | Boundary prior, graph-based, Markov absorption probabilities | |
24 | BGFG [109] | Background and foreground prior | |
25 | GR [113] | Convex-hull-based center prior, contrast and smoothness prior, graph-based | |
26 | BPFS [140] | Global color contrast, background prior, and foreground seeds | |
27 | RPC [66] | Color contrast, center prior | Regions by graph-based segmentation |
28 | DRFI [85] | Color and texture contrast features, backgrounds features | |
29 | CNS [70] | Surroundedness and global color contrast cues | Regional histogram of color name space) |
30 | SIM [75] | Center surroundedness color contrast | Spatial scale |
31 | OURs | Color contrast, contrast ratio, spatial feature, and central prior | Regional color histogram clustering |
Deep-learning-based top-down saliency methods | |||
1 | MSNSD [38] | ||
2 | MSNSD-A [38] | ||
3 | TSL [90] | ||
4 | LCNN [91] | ||
5 | DS [92] | ||
6 | MCDL [93] | ||
7 | [141] |
4.3. Evaluation Metrics
4.4. Qualitative Results
4.5. Quantitative Results
4.5.1. Salient Objects Located at Image Boundary
4.5.2. Salient Objects Located at Image Center
4.5.3. Salient Objects with Complex Background
4.5.4. Salient Objects with Low Color Contrast to Background
4.5.5. Multiple Salient Objects
4.5.6. Images with Foreground and Background Overlapped Objects
4.5.7. Comparison with ECSSD Dataset
4.5.8. Comparison with Deep-Learning-based Top-down Saliency Methods
4.5.9. Comparison with HKU-IS and SOC Datasets
4.5.10. Computational Time Analysis
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, L.; Liu, Z.; Li, L.; Shen, L.; Bai, C.; Wang, Y. Salient object segmentation via effective integration of saliency and objectness. IEEE Trans. Multimed. 2017, 19, 1742–1756. [Google Scholar] [CrossRef]
- Cong, R.; Lei, J.; Fu, H.; Cheng, M.-M.; Lin, W.; Huang, Q. Review of visual saliency detection with comprehensive information. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 2941–2959. [Google Scholar] [CrossRef] [Green Version]
- Ishikura, K.; Kurita, N.; Chandler, D.M.; Ohashi, G. Saliency detection based on multiscale extrema of local perceptual color differences. IEEE Trans. Image Process. 2018, 27, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, H.; Tseng, K.-K.; Chow, T.W.; Wu, Q.J. Graph model-based salient object detection using objectness and multiple saliency cues. Neurocomputing 2019, 323, 188–202. [Google Scholar] [CrossRef]
- Lopez-Alanis, A.; Lizarraga-Morales, R.A.; Sanchez-Yanez, R.E.; Martinez-Rodriguez, D.E.; Contreras-Cruz, M.A. Visual Saliency Detection Using a Rule-Based Aggregation Approach. Appl. Sci. 2019, 9, 2015. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Zhang, H.; Gao, X.; Li, K. Exploiting background divergence and foreground compactness for salient object detection. Neurocomputing 2020, 383, 194–211. [Google Scholar] [CrossRef]
- Ma, W.-P.; Li, W.-X.; Sun, J.-C.; Cao, P.-X. Saliency detection via manifold ranking based on robust foreground. Int. J. Autom. Comput. 2021, 18, 73–84. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, T.; Pang, Y.; Sun, J.; Xue, D. Salient object detection via a boundary-guided graph structure. J. Vis. Commun. Image Represent. 2021, 75, 103048. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, G.; Wang, Z.; Zhu, C. Saliency detection integrating both background and foreground information. Neurocomputing 2016, 216, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Chen, Z.; Yan, J.; Wang, D. Saliency detection via image sparse representation and color features combination. Multimed. Tools Appl. 2020, 79, 23147–23159. [Google Scholar] [CrossRef]
- Fan, H.; Xie, F.; Li, Y.; Jiang, Z.; Liu, J. Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Comput. Biol. Med. 2017, 85, 75–85. [Google Scholar] [CrossRef]
- Yuheng, S.; Hao, Y. Image Segmentation Algorithms Overview. arXiv 2017, arXiv:1707.02051. [Google Scholar]
- Olugbara, O.O.; Taiwo, T.B.; Heukelman, D. Segmentation of melanoma skin lesion using perceptual color difference saliency with morphological analysis. Math. Probl. Eng. 2018, 2018, 1524286. [Google Scholar] [CrossRef]
- Joshi, A.; Khan, M.S.; Soomro, S.; Niaz, A.; Han, B.S.; Choi, K.N. SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases. IEEE Access 2020, 8, 190487–190503. [Google Scholar] [CrossRef]
- Achanta, R.; Estrada, F.; Wils, P.; Süsstrunk, S. Salient region detection and segmentation. In Proceedings of the International Conference on Computer Vision Systems, Santorini, Greece, 12–15 May 2008; pp. 66–75. [Google Scholar]
- John, V.; Yoneda, K.; Liu, Z.; Mita, S. Saliency map generation by the convolutional neural network for real-time traffic light detection using template matching. IEEE Trans. Comput. Imaging 2015, 1, 159–173. [Google Scholar] [CrossRef]
- Li, H.; Su, X.; Wang, J.; Kan, H.; Han, T.; Zeng, Y.; Chai, X. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision. Artif. Intell. Med. 2018, 84, 64–78. [Google Scholar] [CrossRef]
- Liu, W.; Feng, X.; Wang, S.; Hu, B.; Gan, Y.; Zhang, X.; Lei, T. Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery. Int. J. Remote Sens. 2018, 39, 2139–2158. [Google Scholar] [CrossRef]
- Al-Gabalawy, M. Detecting anomalies within unmanned aerial vehicle (UAV) video based on contextual saliency. Appl. Soft Comput. 2020, 96, 106715. [Google Scholar] [CrossRef]
- Tsai, Y.H. Hierarchical salient point selection for image retrieval. Pattern Recognit. Lett. 2012, 33, 1587–1593. [Google Scholar] [CrossRef]
- Giouvanakis, E.; Kotropoulos, C. Saliency map driven image retrieval combining the bag-of-words model and PLSA. In Proceedings of the 2014 19th International Conference on Digital Signal Processing, Hong Kong, China, 23–24 August 2014; pp. 280–285. [Google Scholar]
- Zhu, C.; Huang, K.; Li, G. An innovative saliency guided roi selection model for panoramic images compression. In Proceedings of the 2018 Data Compression Conference, Snowbird, UT, USA, 27–30 March 2018; p. 436. [Google Scholar]
- Li, N.; Zhao, X.; Yang, Y.; Zou, X. Objects classification by learning-based visual saliency model and convolutional neural network. Comput. Intell. Neurosci. 2016, 2016, 7942501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Zhao, Y.; Zhang, C.; Chen, Z. Fast object detection based on selective visual attention. Neurocomputing 2014, 144, 184–197. [Google Scholar] [CrossRef]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1915–1926. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Cai, J.; Zhang, H.; Wang, T. Aggregating complementary boundary contrast with smoothing for salient region detection. Vis. Comput. 2017, 33, 1155–1167. [Google Scholar] [CrossRef]
- Wan, M.; Ren, K.; Gu, G.; Zhang, X.; Qian, W.; Chen, Q.; Yu, S. Infrared small moving target detection via saliency histogram and geometrical invariability. Appl. Sci. 2017, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Fan, W. Unsupervised video object segmentation based on mixture models and saliency detection. Neural Process. Lett. 2020, 51, 657–674. [Google Scholar] [CrossRef]
- Marat, S.; Guironnet, M.; Pellerin, D. Video summarization using a visual attention model. In Proceedings of the 2007 15th European Signal Processing Conference, Poznań, Poland, 3–7 September 2007; pp. 1784–1788. [Google Scholar]
- Adeliyi, T.; Olugbara, O. Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents. Multimed. Tools Appl. 2019, 78, 31807–31821. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Ding, L.; Tang, X.; Zhang, H. A robust visual tracking method via local feature extraction and saliency detection. Vis. Comput. 2019, 36, 683–700. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Guo, L. Saliency detection by selective color features. Neurocomputing 2016, 203, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lin, J.; Tao, Y.; Li, W.; Shi, Y. Salient object detection via color and texture cues. Neurocomputing 2017, 243, 35–48. [Google Scholar] [CrossRef]
- Burt, R.; Thigpen, N.N.; Keil, A.; Principe, J.C. Unsupervised foveal vision neural architecture with top-down attention. Neural Netw. 2021, 141, 145–159. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, H. Unsupervised Salient object detection by aggregating multi-level cues. IEEE Photonics J. 2018, 10, 7801711. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Z.; Yuan, Q.; Zhou, Z.; Hu, D. Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans. Image Process. 2015, 24, 3308–3320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, D.; Lu, H.; Wang, H.; Ruan, X. Amulet: Aggregating multi-level convolutional features for salient object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 202–211. [Google Scholar]
- Liang, Y.; Liu, H.; Ma, N. A novel deep network and aggregation model for saliency detection. Vis. Comput. 2019, 2020, 1883–1895. [Google Scholar] [CrossRef]
- Bruckert, A.; Tavakoli, H.R.; Liu, Z.; Christie, M.; Le Meur, O. Deep saliency models: The quest for the loss function. Neurocomputing 2021, 453, 693–704. [Google Scholar] [CrossRef]
- Cui, W.; Zhang, Q.; Zuo, B. Deep saliency detection via spatial-wise dilated convolutional attention. Neurocomputing 2021, 445, 35–49. [Google Scholar] [CrossRef]
- Li, Z.; Lang, C.; Wang, T.; Li, Y.; Feng, J. Deep spatio-frequency saliency detection. Neurocomputing 2021, 453, 645–655. [Google Scholar] [CrossRef]
- Gupta, A.K.; Seal, A.; Prasad, M.; Khanna, P. Salient object detection techniques in computer vision—A survey. Entropy 2020, 22, 1174. [Google Scholar] [CrossRef]
- Wang, W.; Lai, Q.; Fu, H.; Shen, J.; Ling, H.; Yang, R. Salient object detection in the deep learning era: An in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 1–20. [Google Scholar]
- Zhang, Q.R.; Wang, Y.F. A multi-cues based approach for visual saliency detection. Int. J. Innov. Comput. Inf. Control 2021, 17, 1435–1446. [Google Scholar] [CrossRef]
- Cai, Y.; Dai, L.; Wang, H.; Chen, L.; Li, Y. A novel saliency detection algorithm based on adversarial learning model. IEEE Trans. Image Process. 2020, 29, 4489–4504. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Gao, S.; Chia, L.-T.; Tsang, I.W.-H. Region-based saliency detection and its application in object recognition. IEEE Trans. Circuits Syst. Video Technol. 2013, 24, 769–779. [Google Scholar] [CrossRef]
- Li, N.; Bi, H.; Zhang, Z.; Kong, X.; Lu, D. Performance comparison of saliency detection. Adv. Multimed. 2018, 2018, 9497083. [Google Scholar] [CrossRef]
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the Computer Vision and Pattern Recognition, CVPR, Miami, FL, USA, 20–21 June 2009; pp. 1597–1604. [Google Scholar]
- Zhang, J.; Ehinger, K.A.; Ding, J.; Yang, J. A prior-based graph for salient object detection. In Proceedings of the Image Processing (ICIP), 2014 IEEE International Conference, Paris, France, 27–30 October 2014; pp. 1175–1178. [Google Scholar]
- Cheng, M.-M.; Mitra, N.J.; Huang, X.; Torr, P.H.; Hu, S.-M. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 569–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Li, D.; Wang, S.; Lu, S.; Yang, J. Saliency-based color image segmentation in foreign fiber detection. Math. Comput. Model. 2013, 58, 852–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.; Guo, L. Salient region detection using background priors. Optik 2014, 125, 5872–5877. [Google Scholar] [CrossRef]
- Wei, Y.; Wen, F.; Zhu, W.; Sun, J. Geodesic saliency using background priors. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 29–42. [Google Scholar]
- Tavakoli, H.R.; Rahtu, E.; Heikkilä, J. Fast and efficient saliency detection using sparse sampling and kernel density estimation. In Proceedings of the Scandinavian Conference on Image Analysis, Ystad, Sweden, 23–25 May 2011; pp. 666–675. [Google Scholar]
- Jiang, H.; Wang, J.; Yuan, Z.; Liu, T.; Zheng, N.; Li, S. Automatic salient object segmentation based on context and shape prior. In Proceedings of the BMVC, Dundee, Scotland, 29 August–2 September 2011; p. 9. [Google Scholar]
- Singh, V.K.; Kumar, N.; Singh, N. A hybrid approach using color spatial variance and novel object position prior for salient object detection. Multimed. Tools Appl. 2020, 79, 30045–30067. [Google Scholar] [CrossRef]
- Niu, Y.; Su, C.; Guo, W. Salient object segmentation based on superpixel and background connectivity prior. IEEE Access 2018, 6, 56170–56183. [Google Scholar] [CrossRef]
- Liu, Z.; Le Meur, O.; Luo, S.; Shen, L. Saliency detection using regional histograms. Opt. Lett. 2013, 38, 700–702. [Google Scholar] [CrossRef] [Green Version]
- Afzali, S.; Al-Sahaf, H.; Xue, B.; Hollitt, C.; Zhang, M. Foreground and background feature fusion using a convex hull based center prior for salient object detection. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018; pp. 1–9. [Google Scholar]
- Ullah, I.; Jian, M.; Hussain, S.; Guo, J.; Yu, H.; Wang, X.; Yin, Y. A brief survey of visual saliency detection. Multimed. Tools Appl. 2020, 79, 34605–34645. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Yuan, Z.; Sun, J.; Wang, J.; Zheng, N.; Tang, X.; Shum, H.-Y. Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 353–367. [Google Scholar]
- Borji, A.; Cheng, M.-M.; Jiang, H.; Li, J. Salient object detection: A benchmark. IEEE Trans. Image Process. 2015, 24, 5706–5722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, J.; Koch, C.; Perona, P. Graph-based visual saliency. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; pp. 545–552. [Google Scholar]
- Han, J.; Zhang, D.; Wen, S.; Guo, L.; Liu, T.; Li, X. Two-stage learning to predict human eye fixations via SDAEs. IEEE Trans. Cybern. 2015, 46, 487–498. [Google Scholar] [CrossRef]
- Lou, J.; Ren, M.; Wang, H. Regional principal color based saliency detection. PLoS ONE 2014, 9, e112475. [Google Scholar]
- Kim, J.; Han, D.; Tai, Y.-W.; Kim, J. Salient region detection via high-dimensional color transform and local spatial support. IEEE Trans. Image Process. 2016, 25, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-H.; Yang, J.-Y. Exploiting color volume and color difference for salient region detection. IEEE Trans. Image Process. 2018, 28, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yang, G.; Sun, Y.; Xin, J.; He, D. Salient object detection of dairy goats in farm image based on background and foreground priors. Neurocomputing 2019, 332, 270–282. [Google Scholar] [CrossRef]
- Lou, J.; Wang, H.; Chen, L.; Xu, F.; Xia, Q.; Zhu, W.; Ren, M. Exploiting color name space for salient object detection. Multimed. Tools Appl. 2020, 79, 10873–10897. [Google Scholar] [CrossRef] [Green Version]
- Borji, A. What is a salient object? A dataset and a baseline model for salient object detection. IEEE Trans. Image Process. 2014, 24, 742–756. [Google Scholar] [CrossRef] [Green Version]
- Umeki, Y.; Funahashi, I.; Yoshida, T.; Iwahashi, M. Salient object detection with importance degree. IEEE Access 2020, 8, 147059–147069. [Google Scholar] [CrossRef]
- Seo, H.J.; Milanfar, P. Static and space-time visual saliency detection by self-resemblance. J. Vis. 2009, 9, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahtu, E.; Kannala, J.; Salo, M.; Heikkilä, J. Segmenting salient objects from images and videos. In Computer Vision–ECCV 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 366–379. [Google Scholar]
- Murray, N.; Vanrell, M.; Otazu, X.; Parraga, C.A. Saliency estimation using a non-parametric low-level vision model. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 20–25 June 2011; pp. 433–440. [Google Scholar]
- Luo, H.; Han, G.; Liu, P.; Wu, Y. Salient region detection using diffusion process with nonlocal connections. Appl. Sci. 2018, 8, 2526. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Zhu, W.; Wang, H.; Ren, M. Small target detection combining regional stability and saliency in a color image. Multimed. Tools Appl. 2017, 76, 14781–14798. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S. Salient region detection via simple local and global contrast representation. Neurocomputing 2015, 147, 435–443. [Google Scholar] [CrossRef]
- Zhou, J.; Zhai, J.; Ren, Y.; Lu, A. Background prior-based salient object detection via adaptive figure-ground classification. KSII Trans. Internet Inf. Syst. 2018, 12, 1264–1286. [Google Scholar]
- Jiang, B.; Zhang, L.; Lu, H.; Yang, C.; Yang, M.-H. Saliency detection via absorbing Markov chain. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1665–1672. [Google Scholar]
- Zhou, L.; Yang, Z. Salient region detection based on spatial and background priors. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 262–266. [Google Scholar]
- Pahuja, A.; Majumder, A.; Chakraborty, A.; Venkatesh Babu, R. Enhancing salient object segmentation through attention. arXiv 2019, arXiv:1905.11522. [Google Scholar]
- Yang, C.; Zhang, L.; Lu, H.; Ruan, X.; Yang, M.-H. Saliency detection via graph-based manifold ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2014; pp. 3166–3173. [Google Scholar]
- Wu, X.; Ma, X.; Zhang, J.; Wang, A.; Jin, Z. Salient object detection via deformed smoothness constraint. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2815–2819. [Google Scholar]
- Jiang, H.; Wang, J.; Yuan, Z.; Wu, Y.; Zheng, N.; Li, S. Salient object detection: A discriminative regional feature integration approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2013; pp. 2083–2090. [Google Scholar]
- Xu, L.; Zeng, L.; Duan, H.; Sowah, N.L. Saliency detection in complex scenes. EURASIP J. Image Video Process. 2014, 2014, 31. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Meng, F.; Wu, Q.; Sowah, N.L.; Tan, K.; Li, H. Salient object detection and segmentation via ultra-contrast. IEEE Access 2018, 6, 14870–14883. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Wu, Y.; Wu, C.; Zhang, M. Salient object detection via effective background prior and novel graph. Multimed. Tools Appl. 2020, 79, 25679–25695. [Google Scholar] [CrossRef]
- Yan, K.; Wang, X.; Kim, J.; Feng, D. A new aggregation of DNN sparse and dense labeling for saliency detection. IEEE Trans. Cybern. 2020, 1–14. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Lu, H.; Chi, Z. CNN for saliency detection with low-level feature integration. Neurocomputing 2017, 226, 212–220. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Wei, L.; Yang, M.-H.; Wu, F.; Zhuang, Y.; Ling, H.; Wang, J. Deepsaliency: Multi-task deep neural network model for salient object detection. IEEE Trans. Image Process. 2016, 25, 3919–3930. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Ouyang, W.; Li, H.; Wang, X. Saliency detection by multi-context deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1265–1274. [Google Scholar]
- Wang, H.; Zhu, C.; Shen, J.; Zhang, Z.; Shi, X. Salient object detection by robust foreground and background seed selection. Comput. Electr. Eng. 2021, 90, 106993. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, X. Saliency detection via combining region-level and pixel-level predictions with CNNs. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 809–825. [Google Scholar]
- Wang, L.; Dong, S.-L.; Li, H.-S.; Zhu, X.-B. A brief survey of low-level saliency detection. In Proceedings of the 2016 International Conference on Information System and Artificial Intelligence (ISAI), Hong Kong, China, 24–26 June 2016; pp. 590–593. [Google Scholar]
- Duan, L.; Wu, C.; Miao, J.; Qing, L.; Fu, Y. Visual saliency detection by spatially weighted dissimilarity. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 20–25 June 2011; pp. 473–480. [Google Scholar]
- Erdem, E.; Erdem, A. Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 2013, 13, 11. [Google Scholar] [CrossRef]
- Borji, A.; Itti, L. Exploiting local and global patch rarities for saliency detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 16–21 June 2012; pp. 478–485. [Google Scholar]
- Zhang, L.; Tong, M.H.; Marks, T.K.; Shan, H.; Cottrell, G.W. SUN: A Bayesian framework for saliency using natural statistics. J. Vis. 2008, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, C.; Li, S.; Chen, W.; Kong, F. Image salient object detection based on perceptually homogeneous patch. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 1644–1647. [Google Scholar]
- Jiang, L.; Zhong, H.; Lin, X. Saliency Detection via Boundary Prior and Center Prior. Int. Robot. Autom. J. 2017, 2, 134–139. [Google Scholar]
- Huang, X.; Zhang, Y.-J. 300-FPS salient object detection via minimum directional contrast. IEEE Trans. Image Process. 2017, 26, 4243–4254. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Malik, J. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; p. 10. [Google Scholar]
- Filali, I.; Allili, M.S.; Benblidia, N. Multi-scale salient object detection using graph ranking and global–local saliency refinement. Signal Process. Image Commun. 2016, 47, 380–401. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Zhang, L.; Ruan, X.; Yang, M.-H. Saliency detection via dense and sparse reconstruction. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2976–2983. [Google Scholar]
- Feng, L.; Li, H.B.; Gao, Y.K.; Zhang, Y.K. A color image segmentation method based on region salient color and fuzzy C-means algorithm. Circuits Syst. Signal Process. 2020, 39, 586–610. [Google Scholar] [CrossRef]
- Sun, J.; Lu, H.; Liu, X. Saliency region detection based on Markov absorption probabilities. IEEE Trans. Image Process. 2015, 24, 1639–1649. [Google Scholar] [CrossRef]
- Wang, J.; Lu, H.; Li, X.; Tong, N.; Liu, W. Saliency detection via background and foreground seed selection. Neurocomputing 2015, 152, 359–368. [Google Scholar] [CrossRef]
- Han, A.; Han, F.; Hao, J.; Yuan, Y. An improved saliency detection method based on non-uniform quantification and channel-weighted color distance. Multimed. Tools Appl. 2017, 76, 11037–11050. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Liu, X.-D.; Xu, T.-W.; Gan, J.-H.; Liu, W.-Q. A new fusion approach for content based image retrieval with color histogram and local directional pattern. Int. J. Mach. Learn. Cybern. 2018, 9, 677–689. [Google Scholar] [CrossRef]
- Nouri, F.; Kazemi, K.; Danyali, H. Salient object detection using local, global and high contrast graphs. Signal Image Video Process. 2018, 12, 659–667. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Lu, H. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 2013, 20, 637–640. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Z.; Sun, Z.; Zhao, S. Saliency detection based on salient edges and remarkable discriminating for superpixel pairs. Multimed. Tools Appl. 2018, 77, 5949–5968. [Google Scholar] [CrossRef]
- Jiang, F.; Kong, B.; Li, J.; Dashtipour, K.; Gogate, M. Robust visual saliency optimization based on bidirectional Markov chains. Cogn. Comput. 2021, 13, 69–80. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yan, J.; Chen, Z.; Wang, D. A unified saliency detection framework for visible and infrared images. Multimed. Tools Appl. 2020, 79, 23147–23159. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Liu, C.; Sun, C. A novel color-texture descriptor based on local histograms for image segmentation. IEEE Access 2019, 7, 160683–160695. [Google Scholar] [CrossRef]
- Márquez-de-Silva, S.; Felipe-Riverón, E.; Fernández, L.P.S. A simple and effective method of color image quantization. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Havana, Cuba, 9–12 September 2008; pp. 749–757. [Google Scholar]
- Feng, X.; Guoying, C.; Richang, H.; Jing, G. Camouflage texture evaluation using a saliency map. Multimed. Syst. 2015, 21, 169–175. [Google Scholar] [CrossRef]
- Cheng, G.; Wei, J. Color quantization application based on K-means in remote sensing image processing. J. Phys. Conf. Ser. 2019, 1213, 42012. [Google Scholar] [CrossRef]
- Olugbara, O.O.; Adetiba, E.; Oyewole, S.A. Pixel intensity clustering algorithm for multilevel image segmentation. Math. Probl. Eng. 2015, 2015, 649802. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-Y.; Zhang, W.-S.; Wang, C.-L. A saliency detection method based on global contrast. Int. J. Signal Process. Image Process. Pattern Recognit. 2015, 8, 111–122. [Google Scholar] [CrossRef]
- Lee, S.; Xin, J.H.; Westland, S. Evaluation of image similarity by histogram intersection. Color Res. Appl. 2005, 30, 265–274. [Google Scholar] [CrossRef]
- Fareed, M.M.S.; Chun, Q.; Ahmed, G.; Asif, M.R.; Fareed, M.Z. Saliency detection by exploiting multi-features of color contrast and color distribution. Comput. Electr. Eng. 2018, 70, 551–566. [Google Scholar] [CrossRef]
- Vincent, L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 1993, 2, 176–201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guo, Z.; Jiao, T.; Wang, M. Defect detection of aluminum alloy wheels in radiography images using adaptive threshold and morphological reconstruction. Appl. Sci. 2018, 8, 2365. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratou, E. A binarization algorithm specialized on document images and photos. In Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR’05), Seoul, Korea, 31 August–1 September 2005; pp. 463–467. [Google Scholar]
- Ismail, S.M.; Abdullah, S.N.H.S. Novel binarization method for enhancing ancient and historical manuscript images. In Proceedings of the Mexican International Conference on Artificial Intelligence, Tuxtla Gutiérrez, Mexico, 16–22 November 2014; pp. 393–406. [Google Scholar]
- Alpert, S.; Galun, M.; Brandt, A.; Basri, R. Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Levine, M.D.; An, X.; Xu, X.; He, H. Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 996–1010. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Yan, Q.; Xu, L.; Jia, J. Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yu, Y. Visual saliency based on multiscale deep features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5455–5463. [Google Scholar]
- Fan, D.-P.; Cheng, M.-M.; Liu, J.-J.; Gao, S.-H.; Hou, Q.; Borji, A. Salient objects in clutter: Bringing salient object detection to the foreground. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 186–202. [Google Scholar]
- Zhu, X.; Tang, C.; Wang, P.; Xu, H.; Wang, M.; Chen, J.; Tian, J. Saliency detection via affinity graph learning and weighted manifold ranking. Neurocomputing 2018, 312, 239–250. [Google Scholar] [CrossRef]
- Oh, S.J.; Benenson, R.; Khoreva, A.; Akata, Z.; Fritz, M.; Schiele, B. Exploiting saliency for object segmentation from image level labels. In Proceedings of the IEEE Conference Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5038–5047. [Google Scholar]
- Oh, K.; Lee, M.; Lee, Y.; Kim, S. Salient object detection using recursive regional feature clustering. Inf. Sci. 2017, 387, 1–18. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Jiang, P.; Pan, Z.; Tu, C.; Vasconcelos, N.; Chen, B.; Peng, J. Super diffusion for salient object detection. IEEE Trans. Image Process. 2019, 29, 2903–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, X.; Zhang, L. Saliency detection: A spectral residual approach. In Proceedings of the Computer Vision and Pattern Recognition, CVPR’07, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Ding, M.; Xu, X.; Zhang, F.; Xiao, Z.; Liu, Y.; Geng, L.; Wu, J.; Wen, J.; Wang, M. Saliency detection via background prior and foreground seeds. Multimed. Tools Appl. 2020, 79, 14849–14870. [Google Scholar] [CrossRef]
- Nasiripour, R.; Farsi, H.; Mohamadzadeh, S. Visual saliency object detection using sparse learning. IET Image Process. 2019, 13, 2436–2447. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, J.; Guo, W. Meta-metric for saliency detection evaluation metrics based on application preference. Multimed. Tools Appl. 2018, 77, 26351–26369. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Shen, C.; Dick, A.; Hengel, A.V.D. Contextual hypergraph modeling for salient object detection. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 3328–3335. [Google Scholar]
- Jiang, B.; He, Z.; Ding, C.; Luo, B. Saliency detection via a multi-layer graph based diffusion model. Neurocomputing 2018, 314, 215–223. [Google Scholar] [CrossRef]
- Nawaz, M.; Yan, H. Saliency detection via multiple-morphological and superpixel based fast fuzzy C-mean clustering network. Expert Syst. Appl. 2020, 161, 113654. [Google Scholar] [CrossRef]
- Perazzi, F.; Krähenbühl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 733–740. [Google Scholar]
- Sikha, O.; Kumar, S.S.; Soman, K. Salient region detection and object segmentation in color images using dynamic mode decomposition. J. Comput. Sci. 2018, 25, 351–366. [Google Scholar] [CrossRef]
- Borenstein, E.; Ullman, S. Class-specific, top-down segmentation. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2002; pp. 109–122. [Google Scholar]
- Bravo, M.J.; Farid, H. Recognizing and segmenting objects in clutter. Vis. Res. 2004, 44, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
(a) | Metric | OURs | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FES | GB | GR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Boundary (350) 1 | Precision ↑ | 0.945 | 0.698 | 0.807 | 0.621 | 0.800 | 0.580 | 0.928 | 0.909 | 0.867 | 0.846 | 0.765 | 0.578 | 0.924 |
Recall ↑ | 0.891 | 0.692 | 0.782 | 0.843 | 0.825 | 0.561 | 0.887 | 0.859 | 0.932 | 0.868 | 0.677 | 0.774 | 0.898 | |
F-measure ↑ | 0.932 | 0.697 | 0.801 | 0.661 | 0.805 | 0.576 | 0.918 | 0.897 | 0.882 | 0.851 | 0.743 | 0.614 | 0.918 | |
MAE ↓ | 0.062 | 0.133 | 0.111 | 0.140 | 0.071 | 0.130 | 0.057 | 0.073 | 0.080 | 0.057 | 0.110 | 0.152 | 0.095 | |
OR ↑ | 0.844 | 0.541 | 0.659 | 0.545 | 0.700 | 0.387 | 0.832 | 0.794 | 0.808 | 0.747 | 0.551 | 0.480 | 0.837 | |
Metric | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | ||
Precision ↑ | 0.878 | 0.532 | 0.804 | 0.884 | 0.900 | 0.860 | 0.873 | 0.531 | 0.562 | 0.536 | 0.58 | 0.627 | ||
Recall ↑ | 0.927 | 0.705 | 0.799 | 0.808 | 0.841 | 0.797 | 0.624 | 0.787 | 0.529 | 0.701 | 0.578 | 0.648 | ||
F-measure ↑ | 0.888 | 0.564 | 0.803 | 0.865 | 0.886 | 0.844 | 0.799 | 0.574 | 0.554 | 0.567 | 0.58 | 0.632 | ||
MAE ↓ | 0.077 | 0.179 | 0.092 | 0.104 | 0.070 | 0.097 | 0.274 | 0.191 | 0.325 | 0.154 | 0.233 | 0.219 | ||
OR ↑ | 0.816 | 0.417 | 0.691 | 0.741 | 0.785 | 0.698 | 0.588 | 0.452 | 0.337 | 0.425 | 0.408 | 0.446 | ||
Center (370) 1 | Metric | OURs | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FES | GB | GR |
Precision ↑ | 0.949 | 0.633 | 0.854 | 0.606 | 0.819 | 0.733 | 0.910 | 0.906 | 0.862 | 0.856 | 0.772 | 0.664 | 0.913 | |
Recall ↑ | 0.889 | 0.543 | 0.850 | 0.655 | 0.903 | 0.699 | 0.915 | 0.909 | 0.933 | 0.888 | 0.734 | 0.765 | 0.866 | |
F-measure ↑ | 0.934 | 0.610 | 0.853 | 0.617 | 0.837 | 0.725 | 0.911 | 0.906 | 0.877 | 0.863 | 0.763 | 0.685 | 0.901 | |
MAE ↓ | 0.067 | 0.184 | 0.112 | 0.204 | 0.058 | 0.147 | 0.063 | 0.063 | 0.075 | 0.062 | 0.136 | 0.183 | 0.122 | |
OR ↑ | 0.846 | 0.420 | 0.727 | 0.435 | 0.768 | 0.520 | 0.838 | 0.830 | 0.804 | 0.762 | 0.589 | 0.511 | 0.801 | |
Metric | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | ||
Precision ↑ | 0.859 | 0.549 | 0.874 | 0.896 | 0.908 | 0.839 | 0.808 | 0.505 | 0.474 | 0.507 | 0.500 | 0.742 | ||
Recall ↑ | 0.925 | 0.618 | 0.899 | 0.906 | 0.892 | 0.795 | 0.568 | 0.559 | 0.259 | 0.521 | 0.336 | 0.649 | ||
F-measure ↑ | 0.873 | 0.564 | 0.88 | 0.898 | 0.904 | 0.828 | 0.736 | 0.516 | 0.398 | 0.510 | 0.450 | 0.719 | ||
MAE ↓ | 0.091 | 0.218 | 0.063 | 0.079 | 0.061 | 0.109 | 0.279 | 0.273 | 0.381 | 0.214 | 0.319 | 0.230 | ||
OR ↑ | 0.794 | 0.386 | 0.796 | 0.82 | 0.818 | 0.686 | 0.527 | 0.344 | 0.171 | 0.330 | 0.245 | 0.475 | ||
Complex background (210) 1 | Metric | OURs | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FES | GB | GR |
Precision ↑ | 0.933 | 0.404 | 0.774 | 0.550 | 0.768 | 0.670 | 0.847 | 0.875 | 0.856 | 0.827 | 0.629 | 0.598 | 0.762 | |
Recall ↑ | 0.753 | 0.317 | 0.697 | 0.405 | 0.747 | 0.554 | 0.793 | 0.810 | 0.827 | 0.774 | 0.595 | 0.537 | 0.531 | |
F-measure ↑ | 0.885 | 0.380 | 0.755 | 0.508 | 0.763 | 0.639 | 0.834 | 0.859 | 0.849 | 0.814 | 0.621 | 0.583 | 0.692 | |
MAE ↓ | 0.120 | 0.253 | 0.179 | 0.311 | 0.130 | 0.195 | 0.133 | 0.135 | 0.138 | 0.127 | 0.200 | 0.259 | 0.26 | |
OR ↑ | 0.710 | 0.22 | 0.568 | 0.295 | 0.623 | 0.418 | 0.700 | 0.726 | 0.721 | 0.657 | 0.438 | 0.384 | 0.49 | |
Metric | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | ||
Precision ↑ | 0.824 | 0.482 | 0.828 | 0.821 | 0.819 | 0.695 | 0.683 | 0.334 | 0.287 | 0.416 | 0.381 | 0.708 | ||
Recall ↑ | 0.780 | 0.362 | 0.803 | 0.769 | 0.774 | 0.601 | 0.310 | 0.180 | 0.055 | 0.273 | 0.123 | 0.376 | ||
F-measure ↑ | 0.814 | 0.448 | 0.822 | 0.808 | 0.809 | 0.671 | 0.535 | 0.279 | 0.146 | 0.371 | 0.257 | 0.588 | ||
MAE ↓ | 0.160 | 0.303 | 0.131 | 0.164 | 0.139 | 0.185 | 0.341 | 0.439 | 0.454 | 0.318 | 0.430 | 0.321 | ||
OR ↑ | 0.666 | 0.254 | 0.694 | 0.669 | 0.670 | 0.485 | 0.285 | 0.131 | 0.045 | 0.197 | 0.102 | 0.310 | ||
Low contrast (165) 1 | Metric | OURs | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FES | GB | GR |
Precision ↑ | 0.908 | 0.539 | 0.787 | 0.614 | 0.717 | 0.710 | 0.844 | 0.837 | 0.843 | 0.814 | 0.738 | 0.672 | 0.792 | |
Recall ↑ | 0.715 | 0.365 | 0.653 | 0.510 | 0.628 | 0.545 | 0.715 | 0.721 | 0.753 | 0.710 | 0.545 | 0.600 | 0.501 | |
F-measure ↑ | 0.854 | 0.486 | 0.751 | 0.586 | 0.694 | 0.663 | 0.810 | 0.807 | 0.820 | 0.788 | 0.682 | 0.654 | 0.698 | |
MAE ↓ | 0.122 | 0.227 | 0.178 | 0.248 | 0.155 | 0.193 | 0.146 | 0.159 | 0.148 | 0.134 | 0.187 | 0.224 | 0.233 | |
OR ↑ | 0.659 | 0.278 | 0.538 | 0.38 | 0.516 | 0.423 | 0.625 | 0.631 | 0.654 | 0.599 | 0.445 | 0.436 | 0.457 | |
Metric | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | ||
Precision ↑ | 0.805 | 0.585 | 0.804 | 0.827 | 0.820 | 0.730 | 0.740 | 0.461 | 0.499 | 0.537 | 0.467 | 0.731 | ||
Recall ↑ | 0.685 | 0.491 | 0.720 | 0.710 | 0.720 | 0.572 | 0.249 | 0.370 | 0.219 | 0.441 | 0.238 | 0.452 | ||
F-measure ↑ | 0.774 | 0.560 | 0.783 | 0.797 | 0.795 | 0.686 | 0.508 | 0.437 | 0.385 | 0.511 | 0.382 | 0.640 | ||
MAE ↓ | 0.173 | 0.252 | 0.156 | 0.175 | 0.153 | 0.182 | 0.310 | 0.340 | 0.388 | 0.261 | 0.371 | 0.274 | ||
OR ↑ | 0.578 | 0.348 | 0.606 | 0.613 | 0.61 | 0.466 | 0.233 | 0.257 | 0.175 | 0.316 | 0.198 | 0.364 | ||
Multiple objects (160) 1 | Metric | OURs | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FES | GB | GR |
Precision | 0.876 | 0.640 | 0.735 | 0.576 | 0.752 | 0.537 | 0.84 | 0.834 | 0.807 | 0.790 | 0.633 | 0.556 | 0.86 | |
Recall | 0.786 | 0.567 | 0.696 | 0.592 | 0.743 | 0.535 | 0.748 | 0.762 | 0.818 | 0.759 | 0.587 | 0.644 | 0.666 | |
F-measure | 0.853 | 0.621 | 0.726 | 0.580 | 0.750 | 0.537 | 0.812 | 0.816 | 0.810 | 0.783 | 0.621 | 0.574 | 0.806 | |
MAE ↓ | 0.836 | 0.921 | 0.888 | 0.958 | 0.840 | 0.911 | 0.850 | 0.860 | 0.842 | 0.839 | 0.896 | 0.955 | 0.909 | |
OR | 0.695 | 0.425 | 0.528 | 0.371 | 0.582 | 0.331 | 0.652 | 0.656 | 0.663 | 0.614 | 0.410 | 0.382 | 0.599 | |
Metric | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | ||
Precision | 0.801 | 0.536 | 0.741 | 0.813 | 0.820 | 0.741 | 0.771 | 0.427 | 0.422 | 0.506 | 0.442 | 0.583 | ||
Recall | 0.791 | 0.586 | 0.733 | 0.741 | 0.714 | 0.666 | 0.381 | 0.469 | 0.245 | 0.537 | 0.259 | 0.464 | ||
F-measure | 0.799 | 0.547 | 0.739 | 0.795 | 0.793 | 0.723 | 0.624 | 0.436 | 0.362 | 0.513 | 0.380 | 0.550 | ||
MAE ↓ | 0.864 | 0.967 | 0.866 | 0.878 | 0.851 | 0.883 | 1.032 | 1.047 | 1.124 | 0.960 | 1.091 | 1.021 | ||
OR | 0.638 | 0.338 | 0.574 | 0.619 | 0.619 | 0.521 | 0.352 | 0.255 | 0.141 | 0.314 | 0.176 | 0.295 | ||
Overlap (250) 1 | Metric | OURs | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FCB | FES | GB |
Precision ↑ | 0.986 | 0.703 | 0.969 | 0.738 | 0.881 | 0.815 | 0.981 | 0.969 | 0.975 | 0.949 | 0.968 | 0.853 | 0.777 | |
Recall ↑ | 0.767 | 0.344 | 0.593 | 0.442 | 0.638 | 0.395 | 0.804 | 0.767 | 0.756 | 0.661 | 0.615 | 0.478 | 0.461 | |
F-measure ↑ | 0.925 | 0.567 | 0.845 | 0.639 | 0.810 | 0.654 | 0.934 | 0.913 | 0.924 | 0.862 | 0.855 | 0.722 | 0.671 | |
MAE ↓ | 0.134 | 0.313 | 0.217 | 0.280 | 0.148 | 0.285 | 0.130 | 0.105 | 0.130 | 0.157 | 0.140 | 0.260 | 0.274 | |
OR ↑ | 0.757 | 0.313 | 0.581 | 0.381 | 0.609 | 0.358 | 0.790 | 0.755 | 0.768 | 0.641 | 0.603 | 0.447 | 0.402 | |
Metric | GR | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | |
Precision ↑ | 0.96 | 0.967 | 0.666 | 0.96 | 0.963 | 0.971 | 0.956 | 0.782 | 0.622 | 0.515 | 0.644 | 0.671 | 0.872 | |
Recall ↑ | 0.658 | 0.747 | 0.361 | 0.712 | 0.702 | 0.767 | 0.568 | 0.216 | 0.38 | 0.104 | 0.365 | 0.293 | 0.370 | |
F-measure ↑ | 0.868 | 0.906 | 0.557 | 0.889 | 0.887 | 0.915 | 0.826 | 0.487 | 0.542 | 0.269 | 0.547 | 0.517 | 0.664 | |
MAE ↓ | 0.178 | 0.154 | 0.304 | 0.136 | 0.147 | 0.114 | 0.225 | 0.321 | 0.311 | 0.389 | 0.307 | 0.326 | 0.287 | |
OR ↑ | 0.65 | 0.728 | 0.305 | 0.697 | 0.690 | 0.755 | 0.556 | 0.214 | 0.312 | 0.092 | 0.304 | 0.260 | 0.342 |
Method | Precision | Recall | F-measure | MAE | OR | Method | Precision | Recall | F-measure | MAE | OR |
---|---|---|---|---|---|---|---|---|---|---|---|
OURs | 0.853 | 0.635 | 0.790 | 0.163 | 0.573 | GR | 0.714 | 0.391 | 0.600 | 0.283 | 0.348 |
AC | 0.439 | 0.300 | 0.396 | 0.210 | 0.263 | HDCT | 0.767 | 0.640 | 0.733 | 0.198 | 0.519 |
BGFG | 0.723 | 0.606 | 0.692 | 0.208 | 0.467 | IT | 0.570 | 0.406 | 0.521 | 0.289 | 0.285 |
BPFS | 0.660 | 0.820 | 0.690 | 0.166 | MAP | 0.758 | 0.661 | 0.733 | 0.185 | 0.534 | |
CA | 0.532 | 0.374 | 0.485 | 0.310 | 0.266 | MC | 0.768 | 0.652 | 0.738 | 0.202 | 0.531 |
CNS | 0.708 | 0.600 | 0.680 | 0.166 | 0.480 | MCVS | 0.780 | 0.540 | 0.700 | 0.170 | |
COV | 0.679 | 0.527 | 0.636 | 0.215 | 0.388 | MR | 0.767 | 0.647 | 0.736 | 0.186 | 0.525 |
CSV | 0.760 | 0.650 | 0.740 | 0.210 | MRBF | 0.780 | 0.670 | 0.760 | 0.177 | ||
DCLC | 0.769 | 0.636 | 0.734 | 0.182 | 0.530 | RPC | 0.629 | 0.489 | 0.590 | 0.218 | 0.372 |
DGL | 0.785 | 0.655 | 0.750 | 0.191 | 0.548 | SEG | 0.662 | 0.230 | 0.462 | 0.340 | 0.212 |
DRFI | 0.794 | 0.698 | 0.769 | 0.170 | 0.572 | SeR | 0.366 | 0.207 | 0.311 | 0.404 | 0.144 |
DSR | 0.753 | 0.647 | 0.726 | 0.171 | 0.517 | SIM | 0.365 | 0.078 | 0.197 | 0.433 | 0.062 |
FBSS | 0.770 | 0.560 | 0.709 | 0.169 | SR | 0.460 | 0.302 | 0.411 | 0.311 | 0.212 | |
FCB | 0.721 | 0.515 | 0.660 | 0.173 | 0.422 | SUN | 0.384 | 0.102 | 0.235 | 0.437 | 0.087 |
FES | 0.672 | 0.545 | 0.638 | 0.212 | 0.404 | SWD | 0.704 | 0.354 | 0.573 | 0.318 | 0.283 |
GB | 0.629 | 0.519 | 0.600 | 0.263 | 0.364 |
Method | F-Measure | MAE |
---|---|---|
MSNSD-A [38] | 0.777 | 0.171 |
MSNSD [38] | 0.774 | 0.179 |
DS [92] | 0.759 | 0.160 |
LCNN [91] | 0.715 | 0.162 |
[141] | 0.430 | 0.255 |
TSL [90] | 0.737 | 0.178 |
MCDL [93] | 0.732 | |
OURs | 0.790 | 0.163 |
Datasets | HKU-IS | SOC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Metrics | Precision | Recall | F-Measure | MAE | OR | Precision | Recall | F-Measure | MAE | OR |
DCLC | 0.724 | 0.653 | 0.707 | 0.160 | 0.517 | 0.558 | 0.499 | 0.543 | 0.215 | 0.236 |
DGL | 0.725 | 0.672 | 0.712 | 0.189 | 0.528 | 0.568 | 0.505 | 0.552 | 0.263 | 0.244 |
DRFI | 0.753 | 0.755 | 0.754 | 0.144 | 0.577 | 0.560 | 0.563 | 0.561 | 0.219 | 0.356 |
MSNSD-A [38] | 0.837 | 0.071 | ||||||||
MSNSD [38] | 0.837 | 0.071 | ||||||||
MCDL | 0.743 | 0.093 | ||||||||
OURs | 0.813 | 0.673 | 0.776 | 0.144 | 0.578 | 0.650 | 0.531 | 0.618 | 0.202 | 0.389 |
Method | OURS | AC | BGFG | CA | CNS | COV | DCLC | DGL | DRFI | DSR | FES | GB | GR |
Time (s) | 0.23 | 80.33 | 5.56 | 15.15 | 11.34 | 4.29 | 0.47 | 1.33 | 6.16 | 1.82 | 0.21 | 0.52 | 0.36 |
Method | HDCT | IT | MAP | MC | MR | RPC | SEG | SeR | SIM | SR | SUN | SWD | |
Time (s) | 4.17 | 0.26 | 0.21 | 0.24 | 0.54 | 2.08 | 1.91 | 0.51 | 0.39 | 0.12 | 2.39 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, S.; Olugbara, O.O. Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity. J. Imaging 2021, 7, 187. https://doi.org/10.3390/jimaging7090187
Joseph S, Olugbara OO. Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity. Journal of Imaging. 2021; 7(9):187. https://doi.org/10.3390/jimaging7090187
Chicago/Turabian StyleJoseph, Seena, and Oludayo O. Olugbara. 2021. "Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity" Journal of Imaging 7, no. 9: 187. https://doi.org/10.3390/jimaging7090187
APA StyleJoseph, S., & Olugbara, O. O. (2021). Detecting Salient Image Objects Using Color Histogram Clustering for Region Granularity. Journal of Imaging, 7(9), 187. https://doi.org/10.3390/jimaging7090187