Effective Recycling Solutions for the Production of High-Quality PET Flakes Based on Hyperspectral Imaging and Variable Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Overview
2.2. Data Acquisition and Analysis
2.3. Data Preprocessing
2.4. Principal Component Analysis (PCA)
2.5. Competitive Adaptive Reweighted Sampling (CARS)
2.6. Partial Least Square Discriminant Analysis (PLS-DA)
PLS-DA Performances
3. Experimental Results and Discussion
3.1. Average Raw Reflectance Spectra
3.2. Preprocessing Sets and Variables Selection
- Set 1: Detrend + Smoothing + MC;
- Set 2: SNV + MC;
- Set 3: MSC + Derivative + MC.
3.3. PCA Results of Preprocessing Set 1 (Detrend + Smoothing + MC)
3.4. PCA Results of the Preprocessing Set 2 (SNV + MC)
3.5. PCA Results of Preprocessing Set 3 (MSC + Derivative + MC)
3.6. Classification Performances
3.6.1. PLS-DA Models Constructed for a Limited Set of Spectral Variables
3.6.2. Comparison of Full Spectrum and Reduced Wavelength PLS-DA with Preprocessing Set 3 (MSC + Derivative + MC)
4. Economic and Environmental Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Vilaplana, F.; Karlsson, S. Quality concepts for the improved use of recycled polymeric materials: A review. Macromol. Mater. Eng. 2008, 293, 274–297. [Google Scholar] [CrossRef]
- Plastics Europe. The Circular Economy for Plastics—A European overview. 2019. Available online: https://www.plasticseurope.org/it/resources/publications/1899-circular-economy-plastics-european-overview (accessed on 23 June 2021).
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics. Report Produced by World Economic Forum and Ellen MacArthur Foundation. 2016. Available online: https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 23 June 2021).
- Alsewailem, F.D.; Alrefaie, J.K. Effect of contaminants and processing regime on the mechanical properties and moldability of postconsumer polyethylene terephthalate bottles. Waste Manag. 2018, 81, 88–93. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef]
- Lahtela, V.; Kärki, T. Mechanical Sorting Processing of Waste Material Before Composite Manufacturing—A Review. J. Eng. Sci. Technol. Rev. 2018, 11, 35–46. [Google Scholar] [CrossRef]
- Serranti, S.; Gargiulo, A.; Bonifazi, G. Hyperspectral imaging for process and quality control in recycling plants of polyolefin flakes. J. Near Infrared Spectrosc. 2012, 20, 573–581. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 115–122. [Google Scholar] [CrossRef]
- Serranti, S.; Cucuzza, P.; Bonifazi, G. Hyperspectral imaging for VIS-SWIR classification of post-consumer plastic packaging products by polymer and color. In Proceedings of the SPIE 11525, SPIE Future Sensing Technologies, Online, 13 November 2020; Volume 1152510. [Google Scholar] [CrossRef]
- Allen, V.; Kalivas, J.H.; Rodriguez, R.G. Post-Consumer Plastic Identification Using Raman Spectroscopy. Appl. Spectrosc. 1999, 53, 672–681. [Google Scholar] [CrossRef]
- Gondal, M.A.; Siddiqui, M.N. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. J. Environ. Sci. Health Part A 2007, 42, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.; Yao, L.; Xu, Z. Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. J. Clean. Prod. 2020, 246, 11873. [Google Scholar] [CrossRef]
- Serranti, S.; Fiore, F.; Bonifazi, G.; Takeshima, A.; Takeuchi, H.; Kashiwada, S. Microplastics characterization by hyperspectral imaging in the SWIR range. In Proceedings of the SPIE 11197, SPIE Future Sensing Technologies, Online, 12 November 2019; Volume 1119710. [Google Scholar] [CrossRef]
- Hibbitts, C.A.; Bekker, D.; Hanson, T.; Knuth, A.; Goldberg, A.; Ryan, K.; Cantillo, D.; Daubon, D.; Morgan, F. Dual-band discrimination and imaging of plastic objects. In Proceedings of the SPIE 11012, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV, Online, 22 May 2019; Volume 1101211. [Google Scholar] [CrossRef]
- Serranti, S.; Gargiulo, A.; Bonifazi, G. Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manag. 2011, 31, 2217–2227. [Google Scholar] [CrossRef]
- Mehrubeoglu, M.; Zemlan, M.; Henry, S. Hyperspectral Imaging for Differentiation of Foreign Materials from Pinto Beans; Paper 96110A; SPIE: San Diego, CA, USA, 2015; Volume 9611. [Google Scholar] [CrossRef]
- Ferrari, C.; Foca, G.; Calvini, R.; Ulrici, A. Fast exploration and classification of large hyperspectral image datasets for early bruise detection on apples. Chemom. Intell. Lab. Syst. 2015, 146, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Amigo, J.M.; Martì, I.; Gowen, A. Hyperspectral Imaging and Chemometrics. A Perfect Combination for the Analysis of Food Structure, Composition and Quality. Data Handl. Sci. Technol. 2013, 28, 343–370. [Google Scholar] [CrossRef]
- Ulrici, A.; Serranti, S.; Ferrari, C.; Cesare, D.; Foca, G.; Bonifazi, G. Efficient chemometric strategies for PET-PLA discrimination in recycling plants using hyperspectral imaging. Chemometr. Intell. Lab. 2013, 122, 31–39. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Caballero, D.; Bevilacqua, M.; Amigo, J.M. Application of hyperspectral imaging and chemometrics for classifying plastics with brominated flame retardants. J. Spectr. Imaging. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Navarro, J.; Serranti, S.; Bonifazi, G.; Capobianco, G. Performance Evaluation of Classical Classifiers and Deep Learning Approaches for Polymers Classification Based on Hyperspectral Images. In Advances in Computational Intelligence IWANN 2021. Lecture Notes in Computer Science; Rojas, I., Joya, G., Catala, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 12862. [Google Scholar] [CrossRef]
- Serranti, S.; Palmieri, R.; Bonifazi, G.; Cózar, A. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag. 2018, 76, 117–125. [Google Scholar] [CrossRef]
- Yun, Y.H.; Li, H.D.; Deng, B.C.; Cao, D.S. An overview of variable selection methods in multivariate analysis of near-infrared spectra. Trends Anal. Chem. 2019, 113, 102–115. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Li, J.; Huang, W.; Wang, C. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosyst. Eng. 2016, 143, 9–19. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Sys. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. 2015, 62, 1060–1068. [Google Scholar] [CrossRef]
- Pierna, J.A.F.; Abbas, O.; Baeten, V.; Dardenne, P. A Backward Variable Selection method for PLS regression (BVSPLS). Anal. Chim. Acta 2009, 642, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Belmerhnia, L.; Djermoune, E.H.; Carteret, C.; Brie, D. Simultaneous variable selection for the classification of near infrared spectra. Chemom. Intell. Lab. Sys. 2021, 211, 104268. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Gasbarrone, R.; Serranti, S. Hazelnuts classification by hyperspectral imaging coupled with variable selection methods. In Sensing for Agriculture and Food Quality and Safety XIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11754, p. 117540Q. [Google Scholar]
- Camacho, W.; Karlsson, S. Quantification of antioxidants in polyethylene by near infrared (NIR) analysis and partial least squares (PLS) regression. Int. J. Polym. Anal. Charact. 2002, 7, 41–51. [Google Scholar] [CrossRef]
- González-Martín, I.; González-Pérez, C.; Hernández-Méndez, J.; Alvarez-García, N. Determination of fatty acids in the subcutaneous fat of Iberian breed swine by near infrared spectroscopy (NIRS) with a fibre-optic probe. Meat Sci. 2003, 65, 713–719. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common preprocessing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Esquerre, C.; Gowen, A.A.; Burger, J.; Downey, G.; O′Donnell, C.P. Suppressing sample morphology effects in near infrared spectral imaging using chemometric data pre-treatments. Chemom. Intell. Lab. Syst. 2012, 117, 129–137. [Google Scholar] [CrossRef]
- Vidal, M.; Amigo, J.M. Preprocessing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Sun, D.W. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta 2013, 109, 74–83. [Google Scholar] [CrossRef]
- Calvini, R.; Ulrici, A.; Amigo, J.M. Practical comparison of sparse methods for classification of Arabica and Robusta coffee species using near infrared hyperspectral imaging. Chemom. Intell. Lab. Syst. 2015, 146, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 2015, 896, 34–51. [Google Scholar] [CrossRef]
- Sun, D.W.; Rinnan, Å.; Nørgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Chapter 2–Data Preprocessing. In Infrared Spectroscopy for Food Quality, Analysis and Control; Academic Press: Cambridge, MA, USA, 2009; pp. 29–50. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, F.; Gupta, B.B.; Rho, S.; Liu, Q.; Hou, H.; Jing, D.; Shen, W. Variable Selection and Optimization in Rapid Detection of Soybean Straw Biomass Based on CARS. IEEE Access 2018, 6, 5290–5299. [Google Scholar] [CrossRef]
- Pieszczek, L.; Daszykowski, M. Improvement of recyclable plastic waste detection–A novel strategy for the construction of rigorous classifiers based on the hyperspectral images. Chemom. Intell. Lab. Sys. 2019, 187, 28–40. [Google Scholar] [CrossRef]
- Detection of Tumoral Epithelial Lesions Using Hyperspectral Imaging and Deep Learning. Available online: https://www.specim.fi/downloads/SisuCHEMA_2_2015.pdf (accessed on 23 August 2021).
- Calvini, R.; Orlandi, G.; Foca, G.; Ulrici, A. Development of a classification algorithm for efficient handling of multiple classes in sorting systems based on hyperspectral imaging. J. Spec. Imaging 2018, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Vidal, M.; Gowen, A.; Amigo, J.M. NIR hyperspectral imaging for plastics classification. NIR News 2012, 23, 13–15. [Google Scholar] [CrossRef]
- Serranti, S.; Gargiulo, A.; Bonifazi, G. Classification of polyolefins from building and construction waste using NIR hyperspectral imaging system. Resour. Conserv. Recycl. 2012, 61, 52–58. [Google Scholar] [CrossRef]
- Hu, B.; Serranti, S.; Fraunholcz, N.; Di Maio, F.; Bonifazi, G. Recycling-oriented characterization of polyolefin packaging waste. Waste Manag. 2013, 33, 574–584. [Google Scholar] [CrossRef]
- Luciani, V.; Bonifazi, G.; Hu, B.; Rem, P.; Serranti, S. Upgrading of PVC rich wastes by magnetic density separation and hyperspectral imaging quality control. Waste Manag. 2015, 45, 118–125. [Google Scholar] [CrossRef]
- Serranti, S.; Luciani, V.; Bonifazi, G.; Hu, B.; Rem, P. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag. 2015, 35, 12–20. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLSDA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Balage, J.M.; Amigo, J.M.; Antonelo, D.S.; Mazon, M.R.; Silva, S.d.L. Shear force analysis by core location in Longissimus steaks from Nellore cattle using hyperspectral images—A feasibility study. Meat Sci. 2018, 143, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Currà, A.; Gasbarrone, R.; Cardillo, A.; Trompetto, C.; Fattapposta, F.; Pierelli, F.; Missori, P.; Bonifazi, G.; Serranti, S. Near-infrared spectroscopy as a tool for in vivo analysis of human muscles. Sci. Rep. 2019, 9, 8623. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. Potential application of UV-visible spectroscopy and PLS-DA method to discriminate Indonesian CTC black tea according to grade levels. IOP Conf. Ser. Earth Environ. Sci. 2019, 258, 012042. [Google Scholar] [CrossRef]
- Barboza, E.S.; Lopez, D.R.; Amico, S.C.; Ferreira, C.A. Determination of a recyclability index for the PET glycolysis. Res. Conserv. Recyc. 2009, 53, 122–128. [Google Scholar] [CrossRef]
- Awaja, F.; Pavel, D. Recycling of PET. Eur. Polymer J. 2005, 41, 1453–1477. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.; Roelands, M.C.; White, R.J.; van Harmelen, T.; de Wild, P.; Weckhuysen, B.M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Optical Characteristics | ||
---|---|---|
Spectrograph | Imspector N25E | |
Spectral Range | 1000–2500 nm ± | |
Spectral resolution | 10 nm (30 µm slit) | |
Spectral sampling/pixel | 6.3 nm | |
Spatial resolution | Rms spot radius <15 µm (320) | |
Aberrations | Insignificant astigmatism, smile or keystone <5 µm | |
Numerical aperture | F/2.0 | |
Slit width options | 30 µm (50 or 80 µm optional) | |
Effective slit length | 9.6 mm | |
Total efficiency (typical) | >50%, independent of polarization | |
Stray ligth | <0.5% (halogen lamp, 1400 nm notch filter) | |
Field of view (mm) | 15 mm lens | |
200 | ||
Pixel dimension (mm) | x | 0.625 |
y | (y dimension in mm × 0.03)/9.6 | |
Scanning speed (mm/s) | 72.50 | |
Scanning rate | 100 hyperspectral line images/s (max), corresponding to −60 mm/s with 600 micron pixel | |
Electrical Characteristics | ||
Camera | MCT camera | |
Pixels in full frame | 320 (spatial) × 256 (spectral) | |
Active pixels | 320 (spatial) × 240 (spectral) | |
Pixel size on sample | Scalable from 30 to 300 µm | |
Cooling | 4-stage Peltier for detector array, additional Peltier for active cooling of the detector package | |
Camera output | 14-bit LVDS | |
Signal to noise ratio | 800:1 (at max signal level) | |
Frame grabber | National Instruments PCL-1422 |
Set | Preprocessing | Selected Wavelengths (nm) | Number of Wavelengths |
---|---|---|---|
1 | Detrend + Smoothing + MC | 1000, 1018, 1024, 1030, 1308, 1314, 1320, 1327, 1333, 1339, 1723, 1729, 1905, 1911, 1917, 2086, 2092, 2099, 2105, 2249, 2255, 2261, 2442, 2448 and 2454 | 25 |
2 | SNV + MC | 1000, 1018, 1024, 1030, 1131, 1207, 1308, 1314, 1320, 1327, 1333, 1339, 1346, 1346, 1654, 1723, 1911, 1917, 1923, 2249, 2255, 2261, 2448, 2454, 2479, 2486, 2492, 2498 and 2500 | 29 |
3 | MSC + Derivative + MC | 1049, 1055, 1062, 1119, 1291, 2217, 2224, 2274, 2280, 2286, 2292, 2299, 2411 and 2417 | 14 |
Preprocessing Set | Classes | RMSEC | RMSECV | LVs Number |
---|---|---|---|---|
Set 1 (Detrend + Smoothing + MC) | PET | 0.247965 | 0.248336 | 4 |
Contaminant | 0.247965 | 0.248336 | ||
Set 2 (SNV + MC) | PET | 0.237705 | 0.237803 | 3 |
Contaminant | 0.237705 | 0.237803 | ||
Set 3 (MSC + Derivative + MC) | PET | 0.126412 | 0.126612 | 3 |
Contaminant | 0.126412 | 0.126612 |
PLS-DA Model | Classes | Sensitivity | Specificity | Efficiency (PRED) | |
---|---|---|---|---|---|
Set 1 Detrend + Smoothing + MC (4 LVs) | CAL | PET | 0.974 | 0.989 | 0.969 |
Contaminant | 0.989 | 0.974 | |||
CV | PET | 0.974 | 0.988 | ||
Contaminant | 0.988 | 0.974 | |||
PRED | PET | 0.983 | 0.957 | ||
Contaminant | 0.957 | 0.983 | |||
Set 2 SNV + MC (3 LVs) | CAL | PET | 0.992 | 0.999 | 0.987 |
Contaminant | 0.999 | 0.992 | |||
CV | PET | 0.992 | 0.999 | ||
Contaminant | 0.999 | 0.992 | |||
PRED | PET | 0.995 | 0.979 | ||
Contaminant | 0.979 | 0.995 | |||
Set 3 MSC + Derivative + MC (3 LVs) | CAL | PET | 0.986 | 0.998 | 0.991 |
Contaminant | 0.998 | 0.986 | |||
CV | PET | 0.986 | 0.998 | ||
Contaminant | 0.998 | 0.986 | |||
PRED | PET | 0.994 | 0.988 | ||
Contaminant | 0.988 | 0.994 |
Preprocessing Set | Classes | RMSEC | RMSECV | LVs Number |
---|---|---|---|---|
Set 3 (MSC + Derivative + MC) | PET | 0.105549 | 0.105695 | 5 |
Contaminant | 0.105549 | 0.105695 |
PLS-DA Model | Classes | Sensitivity | Specificity | Efficiency (PRED) | |
---|---|---|---|---|---|
Full spectrum PLS-DA (Set 3: MSC + Derivative + MC) | CAL | PET | 0.986 | 0.998 | 1.000 |
Contaminant | 0.998 | 0.986 | |||
CV | PET | 0.986 | 0.998 | ||
Contaminant | 0.998 | 0.986 | |||
PRED | PET | 1.000 | 1.000 | ||
Contaminant | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucuzza, P.; Serranti, S.; Bonifazi, G.; Capobianco, G. Effective Recycling Solutions for the Production of High-Quality PET Flakes Based on Hyperspectral Imaging and Variable Selection. J. Imaging 2021, 7, 181. https://doi.org/10.3390/jimaging7090181
Cucuzza P, Serranti S, Bonifazi G, Capobianco G. Effective Recycling Solutions for the Production of High-Quality PET Flakes Based on Hyperspectral Imaging and Variable Selection. Journal of Imaging. 2021; 7(9):181. https://doi.org/10.3390/jimaging7090181
Chicago/Turabian StyleCucuzza, Paola, Silvia Serranti, Giuseppe Bonifazi, and Giuseppe Capobianco. 2021. "Effective Recycling Solutions for the Production of High-Quality PET Flakes Based on Hyperspectral Imaging and Variable Selection" Journal of Imaging 7, no. 9: 181. https://doi.org/10.3390/jimaging7090181
APA StyleCucuzza, P., Serranti, S., Bonifazi, G., & Capobianco, G. (2021). Effective Recycling Solutions for the Production of High-Quality PET Flakes Based on Hyperspectral Imaging and Variable Selection. Journal of Imaging, 7(9), 181. https://doi.org/10.3390/jimaging7090181