Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Images
2.2. The Direct Iterative Reconstruction of Computed Tomography Trajectories (DIRECTT) Algorithm
2.3. Software
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Chiffre, L.; Carmignato, S.; Kruth, J.-P.; Schmitt, R.; Weckenmann, A. Industrial applications of computed tomography. CIRP Ann. 2014, 63, 655–677. [Google Scholar] [CrossRef]
- Bartscher, M.; Hilpert, U.; Fiedler, D. Ermittlung der Messunsicherheit von Computertomographie-Messungen am Beispiel eines Zylinderkopfs (Determination of the Measurement Uncertainty of Computed Tomography Measurements Using a Cylinder Head as an Example). TM Tech. Mess. 2008, 75, 178–186. [Google Scholar] [CrossRef]
- Carmignato, S. Accuracy of industrial computed tomography measurements: Experimental results from an international comparison. CIRP Ann. 2012, 61, 491–494. [Google Scholar] [CrossRef]
- Brunke, O.; Lübbehüsen, J.; Hansen, F.; Butz, F.F. A new Concept for High-Speed atline and inlineCT for up to 100% Mass Production Process Control. In International Congress of Metrology; EDP Sciences: Les Ulis, France, 2013. [Google Scholar]
- Tuy, H.K. An Inversion Formula for Cone-Beam Reconstruction. SIAM J. Appl. Math. 1983, 43, 546–552. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, J. Two-pass algorithm for cone-beam reconstruction. In Medical Imaging 2000: Image Processing; International Society for Optics and Photonics: Bellingham, WA, USA, 2000. [Google Scholar]
- Han, C.; Baek, J. Multi-pass approach to reduce cone-beam artifacts in a circular orbit cone-beam CT system. Opt. Express 2019, 27, 10108–10126. [Google Scholar] [CrossRef] [PubMed]
- Maaß, C.; Dennerlein, F.; Noo, F.; Kachelrieß, M. Comparing short scan CT reconstruction algorithms regarding cone-beam artifact performance. In Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010. [Google Scholar]
- Lange, A.; Hentschel, M.P.; Kupsch, A. Computertomographische Rekonstruktion mit DIRECTT. Mater. Test. 2008, 50, 272–277. [Google Scholar] [CrossRef]
- Kupsch, A.; Lange, A.; Hentschel, M.P.; Lück, S.; Schmidt, V.; Grothausmann, R.; Hilger, A.; Manke, I. Missing wedge computed tomography by iterative algorithm DIRECTT. J. Microsc. 2016, 261, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Magkos, S.; Kupsch, A.; Bruno, G. Direct Iterative Reconstruction of Computed Tomography Trajectories Reconstruction from limited number of projections with DIRECTT. Rev. Sci. Instrum. 2020, 91, 103107. [Google Scholar] [CrossRef] [PubMed]
- Grass, M.; Köhler, T.; Proksa, R. 3D cone-beam CT reconstruction for circular trajectories. Phys. Med. Biol. 1999, 45, 329–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Aarle, W.; Palenstijn, W.J.; Cant, J.; Janssens, E.; Bleichrodt, F.; Dabravolski, A.; Sijbers, J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 2016, 24, 25129–25147. [Google Scholar] [CrossRef] [PubMed]
- Gregor, J.; Benson, T. Computational Analysis and Improvement of SIRT. IEEE Trans. Med. Imaging 2008, 27, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436. [Google Scholar] [CrossRef]
- Allner, S.; Gustschin, A.; Fehringer, A.; Noël, P.B.; Pfeiffer, F. Metric-guided regularisation parameter selection for statistical iterative reconstruction in computed tomography. Sci. Rep. 2019, 9, 6016. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
Reconstruction Algorithm | Number of Iterations | Average Time per Iteration (s) 1 | Histogram Entropy | Mean Value of PCC |
---|---|---|---|---|
FDK | 1 | 54.85 ± 0.26 | 2.86 | 0.75 |
DIRECTT | 562 | 14.51 ± 0.18 | 1.89 | 0.92 |
SIRT | 600 | 6.15 ± 0.05 | 2.61 | 0.97 |
CG | 600 | 6.41 ± 0.01 | 2.33 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magkos, S.; Kupsch, A.; Bruno, G. Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT). J. Imaging 2021, 7, 147. https://doi.org/10.3390/jimaging7080147
Magkos S, Kupsch A, Bruno G. Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT). Journal of Imaging. 2021; 7(8):147. https://doi.org/10.3390/jimaging7080147
Chicago/Turabian StyleMagkos, Sotirios, Andreas Kupsch, and Giovanni Bruno. 2021. "Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT)" Journal of Imaging 7, no. 8: 147. https://doi.org/10.3390/jimaging7080147
APA StyleMagkos, S., Kupsch, A., & Bruno, G. (2021). Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT). Journal of Imaging, 7(8), 147. https://doi.org/10.3390/jimaging7080147