No-Reference Image Quality Assessment with Global Statistical Features
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions
1.3. Structure
2. Proposed Method
2.1. Extended Local Fractal Dimension Distribution Feature Vector
2.2. Extended First Digit Distribution Feature Vectors
2.3. Bilaplacian Features
2.4. Image Moments
2.5. Gradient Features
2.6. Perceptual Features
3. Experimental Results
3.1. Databases
3.2. Experimental Setup and Evaluation Metrics
3.3. Parameter Study
3.4. Comparison to the State-of-the-Art
3.5. Performance over Different Distortion Types
3.6. Performance over Different Distortion Levels
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Lin, W.; Kuo, C.C.J. Visual Quality Assessment by Machine Learning; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zhan, Y.; Zhang, R. No-reference JPEG image quality assessment based on blockiness and luminance change. IEEE Signal Process. Lett. 2017, 24, 760–764. [Google Scholar] [CrossRef]
- Sazzad, Z.P.; Kawayoke, Y.; Horita, Y. No reference image quality assessment for JPEG2000 based on spatial features. Signal Process. Image Commun. 2008, 23, 257–268. [Google Scholar] [CrossRef]
- Venkatanath, N.; Praneeth, D.; Bh, M.C.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 2010, 17, 513–516. [Google Scholar] [CrossRef]
- Saad, M.A.; Bovik, A.C.; Charrier, C. A DCT statistics-based blind image quality index. IEEE Signal Process. Lett. 2010, 17, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Dong, H.; Huang, H.; Bovik, A.C. No-reference image quality assessment in curvelet domain. Signal Process. Image Commun. 2014, 29, 494–505. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.; Yang, X.; Zhang, W. Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 2014, 17, 50–63. [Google Scholar] [CrossRef]
- He, L.; Tao, D.; Li, X.; Gao, X. Sparse representation for blind image quality assessment. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1146–1153. [Google Scholar]
- Wu, Q.; Li, H.; Meng, F.; Ngan, K.N.; Luo, B.; Huang, C.; Zeng, B. Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 425–440. [Google Scholar] [CrossRef]
- Jenadeleh, M.; Moghaddam, M.E. BIQWS: Efficient Wakeby modeling of natural scene statistics for blind image quality assessment. Multimed. Tools Appl. 2017, 76, 13859–13880. [Google Scholar] [CrossRef]
- Zhang, M.; Muramatsu, C.; Zhou, X.; Hara, T.; Fujita, H. Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process. Lett. 2014, 22, 207–210. [Google Scholar] [CrossRef]
- Li, Q.; Lin, W.; Fang, Y. No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Process. Lett. 2016, 23, 541–545. [Google Scholar] [CrossRef]
- Varga, D. No-Reference Image Quality Assessment Based on the Fusion of Statistical and Perceptual Features. J. Imaging 2020, 6, 75. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; IEEE Computer Society: Washington, DC, USA, 2014; pp. 806–813. [Google Scholar]
- Chen, Y. Exploring the Impact of Similarity Model to Identify the Most Similar Image from a Large Image Database. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1693, p. 012139. [Google Scholar]
- Wu, J.; Ma, J.; Liang, F.; Dong, W.; Shi, G. End-to-End Blind Image Quality Assessment with Cascaded Deep Features. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1858–1863. [Google Scholar]
- Kang, L.; Ye, P.; Li, Y.; Doermann, D. Convolutional neural networks for no-reference image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1733–1740. [Google Scholar]
- Kang, L.; Ye, P.; Li, Y.; Doermann, D. Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks. In Proceedings of the 2015 IEEE international conference on image processing (ICIP), Quebec, QC, Canada, 27–30 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2791–2795. [Google Scholar]
- Kim, J.; Lee, S. Fully deep blind image quality predictor. IEEE J. Sel. Top. Signal Process. 2016, 11, 206–220. [Google Scholar] [CrossRef]
- Bianco, S.; Celona, L.; Napoletano, P.; Schettini, R. On the use of deep learning for blind image quality assessment. Signal Image Video Process. 2018, 12, 355–362. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; University of Toronto: Toronto, ON, Canada, 2012; pp. 1097–1105. [Google Scholar]
- Zeng, H.; Zhang, L.; Bovik, A.C. A probabilistic quality representation approach to deep blind image quality prediction. arXiv 2017, arXiv:1708.08190. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Varga, D. Multi-Pooled Inception Features for No-Reference Image Quality Assessment. Appl. Sci. 2020, 10, 2186. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Liu, X.; van de Weijer, J.; Bagdanov, A.D. Rankiqa: Learning from rankings for no-reference image quality assessment. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1040–1049. [Google Scholar]
- Lin, K.Y.; Wang, G. Hallucinated-IQA: No-reference image quality assessment via adversarial learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 732–741. [Google Scholar]
- Fastowicz, J.; Lech, P.; Okarma, K. Combined Metrics for Quality Assessment of 3D Printed Surfaces for Aesthetic Purposes: Towards Higher Accordance with Subjective Evaluations. In Proceedings of the International Conference on Computational Science, Amsterdam, The Netherlands, 3–5 June 2020; Springer: Cham, Switzerland, 2020; pp. 326–339. [Google Scholar]
- Okarma, K.; Fastowicz, J.; Lech, P.; Lukin, V. Quality Assessment of 3D Printed Surfaces Using Combined Metrics Based on Mutual Structural Similarity Approach Correlated with Subjective Aesthetic Evaluation. Appl. Sci. 2020, 10, 6248. [Google Scholar] [CrossRef]
- Ieremeiev, O.; Lukin, V.; Ponomarenko, N.; Egiazarian, K. Combined no-reference IQA metric and its performance analysis. Electron. Imaging 2019, 2019, 260–261. [Google Scholar] [CrossRef]
- Ghadiyaram, D.; Bovik, A.C. Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 2015, 25, 372–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Hua, Y.; Zhao, Q.; Huang, H.; Bovik, A.C. Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Process. Image Commun. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Hasler, D.; Suesstrunk, S.E. Measuring colorfulness in natural images. Human Vision and Electronic Imaging VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5007, pp. 87–95.
- Bahrami, K.; Kot, A.C. A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process. Lett. 2014, 21, 751–755. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Matkovic, K.; Neumann, L.; Neumann, A.; Psik, T.; Purgathofer, W. Global contrast factor-a new approach to image contrast. Comput. Aesthet. 2005, 2005, 1. [Google Scholar]
- Pentland, A.P. Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Al-Kadi, O.S.; Watson, D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans. Biomed. Eng. 2008, 55, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, Q.; Sun, C. An improved box-counting method for image fractal dimension estimation. Pattern Recognit. 2009, 42, 2460–2469. [Google Scholar] [CrossRef]
- Benford, F. The law of anomalous numbers. Proc. Am. Philos. Soc. 1938, 78, 551–572. [Google Scholar]
- Pérez-González, F.; Heileman, G.L.; Abdallah, C.T. Benford’s lawin image processing. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; IEEE: Piscataway, NJ, USA, 2007; Volume 1, pp. I–405. [Google Scholar]
- Lin, H.; Hosu, V.; Saupe, D. KADID-10k: A large-scale artificially distorted IQA database. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–3. [Google Scholar]
- Gerhard, H.E.; Wichmann, F.A.; Bethge, M. How sensitive is the human visual system to the local statistics of natural images? PLoS Comput. Biol. 2013, 9, e1002873. [Google Scholar] [CrossRef] [Green Version]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. London. Ser. B. Biol. Sci. 1980, 207, 187–217. [Google Scholar]
- Ghosh, K.; Sarkar, S.; Bhaumik, K. A possible mechanism of zero-crossing detection using the concept of the extended classical receptive field of retinal ganglion cells. Biol. Cybern. 2005, 93, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Sarkar, S.; Bhaumik, K. Understanding image structure from a new multi-scale representation of higher order derivative filters. Image Vis. Comput. 2007, 25, 1228–1238. [Google Scholar] [CrossRef]
- Krig, S. Computer Vision Metrics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Martini, M.G.; Hewage, C.T.; Villarini, B. Image quality assessment based on edge preservation. Signal Process. Image Commun. 2012, 27, 875–882. [Google Scholar] [CrossRef]
- Sadykova, D.; James, A.P. Quality assessment metrics for edge detection and edge-aware filtering: A tutorial review. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2366–2369. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Flusser, J. On the independence of rotation moment invariants. Pattern Recognit. 2000, 33, 1405–1410. [Google Scholar] [CrossRef]
- Yendrikhovskij, S.; Blommaert, F.J.; de Ridder, H. Optimizing color reproduction of natural images. In Proceedings of the Color and Imaging Conference, Scottsdale, AZ, USA, 17–20 November 1998; Society for Imaging Science and Technology: Painted Post, NY, USA, 1998; Volume 1998, pp. 140–145. [Google Scholar]
- Tang, X.; Luo, W.; Wang, X. Content-based photo quality assessment. IEEE Trans. Multimed. 2013, 15, 1930–1943. [Google Scholar] [CrossRef] [Green Version]
- Larson, E.C.; Chandler, D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010, 19, 011006. [Google Scholar]
- Sun, W.; Zhou, F.; Liao, Q. MDID: A multiply distorted image database for image quality assessment. Pattern Recognit. 2017, 61, 153–168. [Google Scholar] [CrossRef]
- Lin, H.; Hosu, V.; Saupe, D. KonIQ-10K: Towards an ecologically valid and large-scale IQA database. arXiv 2018, arXiv:1803.08489. [Google Scholar]
- Thomee, B.; Shamma, D.A.; Friedland, G.; Elizalde, B.; Ni, K.; Poland, D.; Borth, D.; Li, L.J. YFCC100M: The new data in multimedia research. Commun. ACM 2016, 59, 64–73. [Google Scholar] [CrossRef]
- Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 157–175. [Google Scholar]
- Saad, M.A.; Bovik, A.C.; Charrier, C. Blind image quality assessment: A natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 2012, 21, 3339–3352. [Google Scholar] [CrossRef]
- Min, X.; Zhai, G.; Gu, K.; Liu, Y.; Yang, X. Blind image quality estimation via distortion aggravation. IEEE Trans. Broadcast. 2018, 64, 508–517. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans. Image Process. 2011, 20, 3350–3364. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Lin, M.; Yang, G.; He, C. No-reference color image quality assessment: From entropy to perceptual quality. EURASIP J. Image Video Process. 2019, 2019, 77. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Mou, X.; Zhang, L.; Bovik, A.C.; Feng, X. Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 2014, 23, 4850–4862. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.Z.; Wang, Y.G.; Zhu, G. A novel blind image quality assessment method based on refined natural scene statistics. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1004–1008. [Google Scholar]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
Feature Number | Input | Feature | Length of Feature |
---|---|---|---|
f1–f16 | Local fractal dimension map | normalized histogram, skewness, kurtosis, entropy, median, spread, std | 16 |
f17–f32 | Horizontal wavelet coefficients | normalized FDD, symmetric KL, skewness, kurtosis, entropy, median, spread, std | 16 |
f33–f48 | Vertical wavelet coefficients | normalized FDD, symmetric KL, skewness, kurtosis, entropy, median, spread, std | 16 |
f49–f64 | Diagonal wavelet coefficients | normalized FDD, symmetric KL, skewness, kurtosis, entropy, median, spread, std | 16 |
f65–f80 | DCT coefficients | normalized FDD, symmetric KL, skewness, kurtosis, entropy, median, spread, std | 16 |
f81–f96 | Singular values | normalized FDD, symmetric KL, skewness, kurtosis, entropy, median, spread, std | 16 |
f97–f103 | Bilaplacian maps of Y channel | histogram variance | 7 |
f104–f110 | Bilaplacian maps of channel | histogram variance | 7 |
f111–f117 | Bilaplacian maps of channel | histogram variance | 7 |
f118–f125 | Sobel edge map | image moments | 8 |
f126 | RO map [36] | histogram variance | 1 |
f127 | RM map [36] | histogram variance | 1 |
f128 | GM map [36] | histogram variance | 1 |
f129 | RGB image | colorfulness [37] | 1 |
f130 | Grayscale image | sharpness [38] | 1 |
f131 | RGB image | dark channel feature [39] | 1 |
f132 | RGB image | contrast [40] | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | sKL | |
---|---|---|---|---|---|---|---|---|---|---|
Level 1 | 0.307 | 0.184 | 0.126 | 0.095 | 0.076 | 0.064 | 0.055 | 0.049 | 0.044 | 8.52 × 10−4 |
Level 2 | 0.306 | 0.181 | 0.124 | 0.095 | 0.077 | 0.065 | 0.057 | 0.050 | 0.045 | 3.08 × 10−4 |
Level 3 | 0.312 | 0.182 | 0.123 | 0.092 | 0.075 | 0.064 | 0.056 | 0.050 | 0.046 | 8.59 × 10−4 |
Level 4 | 0.317 | 0.185 | 0.124 | 0.090 | 0.072 | 0.062 | 0.055 | 0.049 | 0.045 | 0.002 |
Level 5 | 0.315 | 0.192 | 0.128 | 0.092 | 0.071 | 0.060 | 0.053 | 0.048 | 0.044 | 0.004 |
Benford distribution | 0.301 | 0.176 | 0.125 | 0.097 | 0.079 | 0.067 | 0.058 | 0.051 | 0.046 | 0 |
CF | Sharpness | DCF | GCF | |
---|---|---|---|---|
Reference | 0.2430 | 0.1635 | 0.1655 | 7.3100 |
Level 1 | 0.2423 | 0.1640 | 0.1678 | 7.4314 |
Level 2 | 0.2590 | 0.1580 | 0.1588 | 7.5798 |
Level 3 | 0.2663 | 0.1526 | 0.1581 | 7.5652 |
Level 4 | 0.2732 | 0.1497 | 0.1573 | 7.6172 |
Level 5 | 0.2857 | 0.1458 | 0.1534 | 7.6995 |
Database | #Distorted Images | Distortion Type | #Distortion Types | #Ref. Images | Resolution |
---|---|---|---|---|---|
CSIQ [58] | 866 | artificial | 4-5 | 30 | |
MDID [59] | 1600 | artificial | 5 | 20 | |
KADID-10k [46] | 10,125 | artificial | 25 | 81 | |
LIVE In the Wild [35] | 1162 | authentic | - | - | |
KonIQ-10k [60] | 10,073 | authentic | - | - |
CSIQ [58] | MDID [59] | KADID-10K [46] | ||||
---|---|---|---|---|---|---|
Method | PLCC | SROCC | PLCC | SROCC | PLCC | SROCC |
BLIINDS-II [66] | 0.763 | 0.718 | 0.676 | 0.677 | 0.548 | 0.530 |
BMPRI [67] | 0.785 | 0.737 | 0.757 | 0.751 | 0.554 | 0.530 |
BRISQUE [6] | 0.613 | 0.531 | 0.612 | 0.618 | 0.383 | 0.386 |
CurveletQA [9] | 0.738 | 0.707 | 0.671 | 0.673 | 0.473 | 0.450 |
DIIVINE [68] | 0.654 | 0.635 | 0.713 | 0.722 | 0.423 | 0.428 |
ENIQA [69] | 0.838 | 0.807 | 0.747 | 0.751 | 0.634 | 0.636 |
GRAD-LOG-CP [70] | 0.786 | 0.766 | 0.608 | 0.628 | 0.585 | 0.566 |
NBIQA [71] | 0.831 | 0.794 | 0.760 | 0.768 | 0.635 | 0.626 |
PIQE [4] | 0.644 | 0.522 | 0.269 | 0.253 | 0.289 | 0.237 |
OG-IQA [36] | 0.749 | 0.696 | 0.729 | 0.714 | 0.477 | 0.440 |
SPF-IQA [16] | 0.860 | 0.830 | 0.727 | 0.725 | 0.717 | 0.708 |
SSEQ [72] | 0.710 | 0.642 | 0.763 | 0.762 | 0.453 | 0.433 |
GSF-IQA | 0.875 | 0.840 | 0.781 | 0.773 | 0.737 | 0.725 |
LIVE In the Wild [35] | KonIQ-10k [60] | |||
---|---|---|---|---|
Method | PLCC | SROCC | PLCC | SROCC |
BLIINDS-II [66] | 0.450 | 0.419 | 0.571 | 0.575 |
BMPRI [67] | 0.521 | 0.480 | 0.636 | 0.619 |
BRISQUE [6] | 0.503 | 0.487 | 0.702 | 0.676 |
CurveletQA [9] | 0.620 | 0.611 | 0.728 | 0.716 |
DIIVINE [68] | 0.602 | 0.579 | 0.709 | 0.692 |
ENIQA [69] | 0.578 | 0.554 | 0.758 | 0.744 |
GRAD-LOG-CP [70] | 0.579 | 0.557 | 0.705 | 0.698 |
NBIQA [71] | 0.607 | 0.593 | 0.770 | 0.748 |
PIQE [4] | 0.171 | 0.108 | 0.206 | 0.245 |
OG-IQA [36] | 0.526 | 0.497 | 0.652 | 0.635 |
SPF-IQA [16] | 0.592 | 0.563 | 0.759 | 0.740 |
SSEQ [72] | 0.469 | 0.429 | 0.584 | 0.573 |
GSF-IQA | 0.618 | 0.595 | 0.784 | 0.752 |
CSIQ [58] | MDID [59] | KADID-10K [46] | LIVE In the Wild [35] | KonIQ-10k [60] | |
---|---|---|---|---|---|
BLIINDS-II [66] | 1 | 1 | 1 | 1 | 1 |
BMPRI [67] | 1 | 1 | 1 | 1 | 1 |
BRISQUE [6] | 1 | 1 | 1 | 1 | 1 |
CurveletQA [9] | 1 | 1 | 1 | - | 1 |
DIIVINE [68] | 1 | 1 | 1 | 1 | 1 |
ENIQA [69] | 1 | 1 | 1 | 1 | 1 |
GRAD-LOG-CP [70] | 1 | 1 | 1 | 1 | 1 |
NBIQA [71] | 1 | 1 | 1 | 1 | - |
PIQE [4] | 1 | 1 | 1 | 1 | 1 |
OG-IQA [36] | 1 | 1 | 1 | 1 | 1 |
SPF-IQA [16] | 1 | 1 | 1 | 1 | 1 |
SSEQ [72] | 1 | 1 | 1 | 1 | 1 |
Weighted Average | Direct Average | |||
---|---|---|---|---|
Method | PLCC | SROCC | PLCC | SROCC |
BLIINDS-II [66] | 0.569 | 0.560 | 0.602 | 0.584 |
BMPRI [67] | 0.609 | 0.588 | 0.651 | 0.623 |
BRISQUE [6] | 0.547 | 0.534 | 0.563 | 0.540 |
CurveletQA [9] | 0.611 | 0.595 | 0.646 | 0.631 |
DIIVINE [68] | 0.581 | 0.574 | 0.620 | 0.611 |
ENIQA [69] | 0.699 | 0.692 | 0.711 | 0.698 |
GRAD-LOG-CP [70] | 0.644 | 0.633 | 0.653 | 0.643 |
NBIQA [71] | 0.706 | 0.692 | 0.721 | 0.706 |
PIQE [4] | 0.260 | 0.246 | 0.316 | 0.273 |
OG-IQA [36] | 0.580 | 0.553 | 0.627 | 0.596 |
SPF-IQA [16] | 0.735 | 0.720 | 0.731 | 0.713 |
SSEQ [72] | 0.539 | 0.522 | 0.596 | 0.568 |
GSF-IQA | 0.759 | 0.737 | 0.759 | 0.737 |
Dist. Type | BLIINDS-II [66] | BMPRI [67] | CurveletQA [9] | ENIQA [69] | GRAD-LOG-CP [70] | NBIQA [71] | OG-IQA [36] | SPF-IQA [16] | SSEQ [72] | GSF-IQA |
---|---|---|---|---|---|---|---|---|---|---|
GB | 0.789 | 0.839 | 0.806 | 0.785 | 0.809 | 0.843 | 0.841 | 0.835 | 0.714 | 0.873 |
LB | 0.755 | 0.815 | 0.850 | 0.797 | 0.808 | 0.845 | 0.804 | 0.802 | 0.739 | 0.800 |
MB | 0.416 | 0.390 | 0.720 | 0.574 | 0.513 | 0.749 | 0.340 | 0.545 | 0.368 | 0.640 |
CD | 0.519 | 0.445 | 0.270 | 0.691 | 0.416 | 0.633 | 0.289 | 0.791 | 0.422 | 0.750 |
CS | 0.023 | 0.106 | 0.113 | 0.163 | 0.066 | 0.001 | 0.112 | 0.324 | 0.050 | 0.348 |
CQ | 0.476 | 0.667 | 0.628 | 0.644 | 0.677 | 0.690 | 0.534 | 0.720 | 0.551 | 0.759 |
CSA1 | 0.126 | 0.099 | 0.040 | 0.064 | 0.007 | 0.024 | 0.046 | 0.086 | 0.108 | 0.161 |
CSA2 | 0.509 | 0.439 | 0.038 | 0.675 | 0.333 | 0.641 | 0.175 | 0.759 | 0.213 | 0.695 |
JP2K | 0.636 | 0.616 | 0.605 | 0.634 | 0.670 | 0.694 | 0.566 | 0.605 | 0.455 | 0.699 |
JPEG | 0.759 | 0.817 | 0.615 | 0.773 | 0.783 | 0.803 | 0.742 | 0.806 | 0.689 | 0.795 |
WN | 0.544 | 0.841 | 0.723 | 0.769 | 0.846 | 0.767 | 0.723 | 0.890 | 0.638 | 0.883 |
WNCC | 0.683 | 0.769 | 0.756 | 0.796 | 0.861 | 0.789 | 0.684 | 0.912 | 0.674 | 0.900 |
IN | 0.609 | 0.457 | 0.609 | 0.618 | 0.710 | 0.649 | 0.557 | 0.701 | 0.581 | 0.798 |
MN | 0.589 | 0.606 | 0.624 | 0.722 | 0.722 | 0.745 | 0.673 | 0.773 | 0.602 | 0.829 |
Denoise | 0.687 | 0.814 | 0.772 | 0.809 | 0.826 | 0.864 | 0.712 | 0.882 | 0.617 | 0.835 |
Brighten | 0.397 | 0.437 | 0.403 | 0.515 | 0.449 | 0.489 | 0.216 | 0.643 | 0.277 | 0.624 |
Darken | 0.425 | 0.372 | 0.198 | 0.361 | 0.367 | 0.476 | 0.264 | 0.386 | 0.312 | 0.307 |
MS | 0.214 | 0.206 | 0.055 | 0.112 | 0.138 | 0.268 | 0.094 | 0.139 | 0.099 | 0.149 |
Jitter | 0.820 | 0.701 | 0.594 | 0.645 | 0.790 | 0.777 | 0.483 | 0.715 | 0.539 | 0.821 |
NEP | 0.042 | −0.042 | 0.038 | 0.019 | 0.076 | 0.016 | 0.077 | 0.076 | −0.002 | 0.172 |
Pixelate | 0.576 | 0.526 | 0.113 | 0.472 | 0.681 | 0.567 | 0.280 | 0.716 | 0.460 | 0.735 |
Quantization | 0.304 | 0.304 | 0.350 | 0.548 | 0.578 | 0.464 | 0.531 | 0.688 | 0.202 | 0.596 |
CB | 0.176 | 0.151 | 0.072 | 0.126 | 0.306 | 0.158 | 0.076 | 0.377 | 0.167 | 0.291 |
HS | 0.620 | 0.544 | 0.622 | 0.709 | 0.701 | 0.650 | 0.585 | 0.819 | 0.586 | 0.849 |
CC | 0.116 | 0.129 | −0.002 | 0.188 | 0.136 | 0.230 | 0.172 | 0.226 | 0.061 | 0.273 |
All | 0.530 | 0.530 | 0.450 | 0.636 | 0.566 | 0.626 | 0.440 | 0.708 | 0.433 | 0.725 |
Dist. Type | BLIINDS-II [66] | BMPRI [67] | CurveletQA [9] | ENIQA [69] | GRAD-LOG-CP [70] | NBIQA [71] | OG-IQA [36] | SPF-IQA [16] | SSEQ [72] | GSF-IQA |
---|---|---|---|---|---|---|---|---|---|---|
Level 1 | 0.172 | 0.093 | 0.082 | 0.127 | 0.103 | 0.133 | 0.087 | 0.212 | 0.007 | 0.217 |
Level 2 | 0.228 | 0.259 | 0.186 | 0.373 | 0.298 | 0.366 | 0.223 | 0.458 | 0.127 | 0.490 |
Level 3 | 0.358 | 0.383 | 0.309 | 0.505 | 0.403 | 0.445 | 0.282 | 0.603 | 0.246 | 0.642 |
Level 4 | 0.535 | 0.488 | 0.417 | 0.610 | 0.513 | 0.595 | 0.374 | 0.691 | 0.363 | 0.694 |
Level 5 | 0.629 | 0.584 | 0.532 | 0.688 | 0.605 | 0.678 | 0.494 | 0.741 | 0.548 | 0.747 |
All | 0.530 | 0.530 | 0.450 | 0.636 | 0.566 | 0.626 | 0.440 | 0.708 | 0.433 | 0.725 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, D. No-Reference Image Quality Assessment with Global Statistical Features. J. Imaging 2021, 7, 29. https://doi.org/10.3390/jimaging7020029
Varga D. No-Reference Image Quality Assessment with Global Statistical Features. Journal of Imaging. 2021; 7(2):29. https://doi.org/10.3390/jimaging7020029
Chicago/Turabian StyleVarga, Domonkos. 2021. "No-Reference Image Quality Assessment with Global Statistical Features" Journal of Imaging 7, no. 2: 29. https://doi.org/10.3390/jimaging7020029
APA StyleVarga, D. (2021). No-Reference Image Quality Assessment with Global Statistical Features. Journal of Imaging, 7(2), 29. https://doi.org/10.3390/jimaging7020029