Next Article in Journal
Neutron and Synchrotron Imaging Studies of Preservation State of Metal of Cultural Heritage Objects
Previous Article in Journal
A Radioactive-Free Method for the Thorough Analysis of the Kinetics of Cell Cytotoxicity
 
 
Article

Fast Blob and Air Line Defects Detection for High Speed Glass Tube Production Lines

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Largo L. Lazzarino 2, 56100 Pisa, Italy
*
Author to whom correspondence should be addressed.
Academic Editor: Kuo-Liang Chung
J. Imaging 2021, 7(11), 223; https://doi.org/10.3390/jimaging7110223
Received: 28 August 2021 / Revised: 11 October 2021 / Accepted: 18 October 2021 / Published: 25 October 2021
(This article belongs to the Section Image and Video Processing)
During the production of pharmaceutical glass tubes, a machine-vision based inspection system can be utilized to perform the high-quality check required by the process. The necessity to improve detection accuracy, and increase production speed determines the need for fast solutions for defects detection. Solutions proposed in literature cannot be efficiently exploited due to specific factors that characterize the production process. In this work, we have derived an algorithm that does not change the detection quality compared to state-of-the-art proposals, but does determine a drastic reduction in the processing time. The algorithm utilizes an adaptive threshold based on the Sigma Rule to detect blobs, and applies a threshold to the variation of luminous intensity along a row to detect air lines. These solutions limit the detection effects due to the tube’s curvature, and rotation and vibration of the tube, which characterize glass tube production. The algorithm has been compared with state-of-the-art solutions. The results demonstrate that, with the algorithm proposed, the processing time of the detection phase is reduced by 86%, with an increase in throughput of 268%, achieving greater accuracy in detection. Performance is further improved by adopting Region of Interest reduction techniques. Moreover, we have developed a tuning procedure to determine the algorithm’s parameters in the production batch change. We assessed the performance of the algorithm in a real environment using the “certification” functionality of the machine. Furthermore, we observed that out of 1000 discarded tubes, nine should not have been discarded and a further seven should have been discarded. View Full-Text
Keywords: pharmaceutical glass tube; image processing; defect detection; inspection systems; real time inspection pharmaceutical glass tube; image processing; defect detection; inspection systems; real time inspection
Show Figures

Figure 1

MDPI and ACS Style

De Vitis, G.A.; Di Tecco, A.; Foglia, P.; Prete, C.A. Fast Blob and Air Line Defects Detection for High Speed Glass Tube Production Lines. J. Imaging 2021, 7, 223. https://doi.org/10.3390/jimaging7110223

AMA Style

De Vitis GA, Di Tecco A, Foglia P, Prete CA. Fast Blob and Air Line Defects Detection for High Speed Glass Tube Production Lines. Journal of Imaging. 2021; 7(11):223. https://doi.org/10.3390/jimaging7110223

Chicago/Turabian Style

De Vitis, Gabriele Antonio, Antonio Di Tecco, Pierfrancesco Foglia, and Cosimo Antonio Prete. 2021. "Fast Blob and Air Line Defects Detection for High Speed Glass Tube Production Lines" Journal of Imaging 7, no. 11: 223. https://doi.org/10.3390/jimaging7110223

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop