An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static Digital Video Recordings
Abstract
:1. Introduction
2. ENF Fundamentals
- The ENF is a non-periodic signal randomly fluctuating around the fundamental frequency.
- ENF fluctuations are identical within the same interconnected network.
- The ENF signal can also be found in higher harmonics [43].
2.1. ENF Estimation
3. Proposed Method
Algorithm 1: Proposed SLIC-based approach for ENF estimation in video recordings. |
Inputs: Number of video frames , number of superpixels N, threshold , cut-off frequencies, segment duration L, number of overlapping segments V, ESPRIT parameters m and W, and reference ground truth. Output: Estimated ENF vector .
|
Evaluation Metric
4. Results
4.1. Dataset
4.2. Experimental Evaluation
4.3. ENF Estimation in Static Video
4.4. ENF Estimation in Static Video
4.5. ENF Estimation in Non-Static Video
4.6. ENF Estimation in Non-Static Video
4.7. ENF Estimation in Non-Static Video
4.8. ENF Estimation in Non-Static Video
4.9. Assessment of MCC Differences
5. Conclusions, Limitations, and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ENF signal | |
Hz | Hertz |
reference ENF signal | |
filter order | |
sampling frequency of camera (in frames per second (fps)) | |
aliased frequency | |
frequency of light source illumination | |
identity matrix | |
integer number | |
mean intensity signal | |
periodogram | |
D | segment duration (in s) |
L | segment duration (in samples) |
G | hop size (in samples) |
m | order of the covariance matrix |
predefined threshold | |
S | segment shift (in s) |
MV | median intensity value |
N | number of superpixels |
K | number of estimated ENF values |
number of video frames | |
mean intensity value | |
V | overlapping segments |
test statistic | |
W | principal eigenvectors |
CCD | charge-coupled device |
CMOS | complementary metal oxide semiconductor |
ENF | electric network frequency |
ESPRIT | estimation by rotational invariant techniques |
MCC | maximum correlation coefficient |
MUSIC | multiple signal classification |
STFT | short-time Fourier transform |
SLIC | simple linear iterative clustering |
References
- Castillo Camacho, I.; Wang, K. A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics. J. Imaging 2021, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Grigoras, C. Digital audio recording analysis: The electric network frequency (ENF) criterion. Int. J. Speech Lang. Law 2005, 12, 63–76. [Google Scholar] [CrossRef]
- Garg, R.; Varna, A.L.; Hajj-Ahmad, A.; Wu, M. “Seeing” ENF: Power-Signature-Based Timestamp for Digital Multimedia via Optical Sensing and Signal Processing. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1417–1432. [Google Scholar] [CrossRef]
- Hua, G.; Liao, H.; Wang, Q.; Zhang, H.; Ye, D. Detection of Electric Network Frequency in Audio Recordings—From Theory to Practical Detectors. IEEE Trans. Inf. Forensics Secur. 2020, 16, 236–248. [Google Scholar] [CrossRef]
- Ojowu, O.; Karlsson, J.; Li, J.; Liu, Y. ENF Extraction from Digital Recordings Using Adaptive Techniques and Frequency Tracking. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1330–1338. [Google Scholar] [CrossRef]
- Bykhovsky, D.; Cohen, A. Electrical Network Frequency (ENF) Maximum-Likelihood Estimation via a Multitone Harmonic Model. IEEE Trans. Inf. Forensics Secur. 2013, 8, 744–753. [Google Scholar] [CrossRef]
- Hajj-Ahmad, A.; Garg, R.; Wu, M. Spectrum Combining for ENF Signal Estimation. IEEE Signal Process. Lett. 2013, 20, 885–888. [Google Scholar] [CrossRef]
- Lin, X.; Kang, X. Robust Electric Network Frequency Estimation with Rank Reduction and Linear Prediction. ACM Trans. Multimed. Com. Commun. Appl. 2018, 14, 1–13. [Google Scholar] [CrossRef]
- Karantaidis, G.; Kotropoulos, C. Blackman–Tukey spectral estimation and electric network frequency matching from power mains and speech recordings. IET Signal Process. 2021, 15, 396–409. [Google Scholar] [CrossRef]
- Fu, L.; Markham, P.N.; Conners, R.W.; Liu, Y. An Improved Discrete Fourier Transform-Based Algorithm for Electric Network Frequency Extraction. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1173–1181. [Google Scholar]
- Karantaidis, G.; Kotropoulos, C. Assessing spectral estimation methods for Electric Network Frequency extraction. In Proceedings of the 22nd Pan-Hellenic Conference on Informatics, Athens, Greece, 29 November–1 December 2018; pp. 202–207. [Google Scholar]
- Karantaidis, G.; Kotropoulos, C. Efficient Capon-Based Approach Exploiting Temporal Windowing for Electric Network Frequency Estimation. In Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), Pittsburgh, PA, USA, 13–16 October 2019. [Google Scholar]
- Dosiek, L. Extracting Electrical Network Frequency From Digital Recordings Using Frequency Demodulation. IEEE Signal Process. Lett. 2015, 22, 691–695. [Google Scholar] [CrossRef]
- Hajj-Ahmad, A.; Garg, R.; Wu, M. Instantaneous frequency estimation and localization for ENF signals. In Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, CA, USA, 3–6 December 2012; pp. 1–10. [Google Scholar]
- Cooper, A.J. The electric network frequency (ENF) as an aid to authenticating forensic digital audio recordings—An automated approach. In Audio Engineering Society Conference: 33rd International Conference: Audio Forensics-Theory and Practice; Audio Engineering Society: New York, NY, USA, 2008. [Google Scholar]
- Hua, G.; Liao, H.; Zhang, H.; Ye, D.; Ma, J. Robust ENF Estimation Based on Harmonic Enhancement and Maximum Weight Clique. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3874–3887. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, M.; Wong, C.; Wu, M. Adaptive multi-trace carving for robust frequency tracking in forensic applications. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1174–1189. [Google Scholar] [CrossRef]
- Liao, H.; Hua, G.; Zhang, H. ENF Detection in Audio Recording via Multi-Harmonic Combining. IEEE Signal Process. Lett. 2021, 28, 1808–1812. [Google Scholar] [CrossRef]
- Esquef, P.A.A.; Apolinario, J.A.; Biscainho, L.W.P. Edit Detection in Speech Recordings via Instantaneous Electric Network Frequency Variations. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2314–2326. [Google Scholar] [CrossRef]
- Rodriguez, D.P.N.; Apolinario, J.A.; Biscainho, L.W.P. Audio Authenticity: Detecting ENF Discontinuity With High Precision Phase Analysis. IEEE Trans. Inf. Forensics Secur. 2010, 5, 534–543. [Google Scholar] [CrossRef]
- Hua, G.; Zhang, Y.; Goh, J.; Thing, V.L.L. Audio Authentication by Exploring the Absolute-Error-Map of ENF Signals. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1003–1016. [Google Scholar] [CrossRef]
- Reis, P.M.J.I.; Costa, J.P.C.L.; Miranda, R.K.; Galdo, G.D. ESPRIT-Hilbert-Based Audio Tampering Detection with SVM Classifier for Forensic Analysis via Electrical Network Frequency. IEEE Trans. Inf. Forensics Secur. 2017, 12, 853–864. [Google Scholar] [CrossRef]
- Garg, R.; Hajj-Ahmad, A.; Wu, M. Geo-location estimation from electrical network frequency signals. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 2862–2866. [Google Scholar]
- Hajj-Ahmad, A.; Garg, R.; Wu, M. ENF-Based Region-of-Recording Identification for Media Signals. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1125–1136. [Google Scholar] [CrossRef]
- Lin, X.; Liu, J.; Kang, X. Audio Recapture Detection With Convolutional Neural Networks. IEEE Trans. Multimed. 2016, 18, 1480–1487. [Google Scholar] [CrossRef]
- Hua, G.; Zhang, H. ENF Signal Enhancement in Audio Recordings. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1868–1878. [Google Scholar] [CrossRef]
- Elmesalawy, M.M.; Eissa, M.M. New Forensic ENF Reference Database for Media Recording Authentication Based on Harmony Search Technique Using GIS and Wide Area Frequency Measurements. IEEE Trans. Inf. Forensics Secur. 2014, 9, 633–644. [Google Scholar] [CrossRef]
- Bykhovsky, D. Recording device identification by ENF harmonics power analysis. Forensic Sci. Int. 2020, 307, 110100. [Google Scholar] [CrossRef]
- Hajj-Ahmad, A.; Wong, C.; Gambino, S.; Zhu, Q.; Yu, M.; Wu, M. Factors Affecting ENF Capture in Audio. IEEE Trans. Inf. Forensics Secur. 2019, 14, 277–288. [Google Scholar] [CrossRef]
- Su, H.; Hajj-Ahmad, A.; Garg, R.; Wu, M. Exploiting rolling shutter for ENF signal extraction from video. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5367–5371. [Google Scholar]
- Vatansever, S.; Dirik, A.E.; Memon, N. Analysis of Rolling Shutter Effect on ENF-Based Video Forensics. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2262–2275. [Google Scholar] [CrossRef] [Green Version]
- Vatansever, S.; Dirik, A.E.; Memon, N. Detecting the Presence of ENF Signal in Digital Videos: A Superpixel-Based Approach. IEEE Signal Process. Lett. 2017, 24, 1463–1467. [Google Scholar] [CrossRef]
- Fernández-Menduiña, S.; Pérez-González, F. Temporal Localization of Non-Static Digital Videos Using the Electrical Network Frequency. IEEE Signal Process. Lett. 2020, 27, 745–749. [Google Scholar] [CrossRef]
- Hajj-Ahmad, A.; Berkovich, A.; Wu, M. Exploiting power signatures for camera forensics. IEEE Signal Process. Lett. 2016, 23, 713–717. [Google Scholar] [CrossRef]
- Su, H.; Hajj-Ahmad, A.; Wong, C.; Garg, R.; Wu, M. ENF signal induced by power grid: A new modality for video synchronization. In Proceedings of the 2nd ACM International Workshop on Immersive Media Experiences, Orlando, FL, USA, 3–7 November 2014; pp. 13–18. [Google Scholar]
- Su, H.; Hajj-Ahmad, A.; Wu, M.; Oard, D. Exploring the use of ENF for multimedia synchronization. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 4613–4617. [Google Scholar]
- Wang, Y.; Hu, Y.; Liew, A.; Li, C.T. ENF Based Video Forgery Detection Algorithm. Int. J. Digit. Crime Forensics 2020, 12, 131–156. [Google Scholar] [CrossRef]
- Nagothu, D.; Chen, Y.; Blasch, E.; Aved, A.; Zhu, S. Detecting malicious false frame injection attacks on surveillance systems at the edge using electrical network frequency signals. Sensors 2019, 19, 2424. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.W.; Hajj-Ahmad, A.; Wu, M. Invisible Geo-Location Signature in A Single Image. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 1987–1991. [Google Scholar]
- Ferrara, P.; Sanchez, I.; Draper-Gil, G.; Junklewitz, H.; Beslay, L. A MUSIC Spectrum Combining Approach for ENF-based Video Timestamping. In Proceedings of the 2021 IEEE International Workshop on Biometrics and Forensics (IWBF), Rome, Italy, 6–7 May 2021; pp. 1–6. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoras, C. Applications of ENF criterion in forensic audio, video, computer and telecommunication analysis. Forensic Sci. Int. 2007, 167, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Nicolalde-Rodríguez, D.P.; Apolinário, J.A.; Biscainho, L.W.P. Audio authenticity based on the discontinuity of ENF higher harmonics. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Hu, Y.; Li, C.T.; Lv, Z.; Liu, B.B. Audio forgery detection based on max offsets for cross correlation between ENF and reference signal. In International Workshop on Digital Watermarking; Springer: Berlin/Heidelberg, Germany, 2012; pp. 253–266. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Hajj-Ahmad, A.; Baudry, S.; Chupeau, B.; Doërr, G. Flicker forensics for pirate device identification. In Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, Paris, France, 3–5 July 2019; pp. 75–84. [Google Scholar]
- Allen, J.B.; Rabiner, L.R. A unified approach to short-time Fourier analysis and synthesis. Proc. IEEE 1977, 65, 1558–1564. [Google Scholar] [CrossRef]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Huijbregtse, M.; Geradts, Z. Using the ENF criterion for determining the time of recording of short digital audio recordings. In International Workshop on Computational Forensics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 116–124. [Google Scholar]
- Fernandez-Menduina, S.; Pérez-González, F. ENF Moving Video Database. 2020. Available online: https://doi.org/10.5281/zenodo.3549378 (accessed on 8 September 2021).
- Papoulis, A. Probability and Statistics; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1990. [Google Scholar]
Power Mains (Hz) | Camera Frame Rate (fps) | Aliased Base Frequency (Hz) |
---|---|---|
50 | ||
50 | 30 | 10 |
60 | ||
60 | 30 | 0 |
Video Name | Video Type |
---|---|
static | |
static | |
non-static | |
non-static | |
non-static | |
non-static |
mov | MCC (here) | MCC [3] | Bandpass Filter Order | ENF Samples K |
---|---|---|---|---|
111 | 702 | |||
81 | 639 | |||
51 | 647 | |||
51 | 623 | |||
511 | 729 | |||
111 | 741 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karantaidis, G.; Kotropoulos, C. An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static Digital Video Recordings. J. Imaging 2021, 7, 202. https://doi.org/10.3390/jimaging7100202
Karantaidis G, Kotropoulos C. An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static Digital Video Recordings. Journal of Imaging. 2021; 7(10):202. https://doi.org/10.3390/jimaging7100202
Chicago/Turabian StyleKarantaidis, Georgios, and Constantine Kotropoulos. 2021. "An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static Digital Video Recordings" Journal of Imaging 7, no. 10: 202. https://doi.org/10.3390/jimaging7100202
APA StyleKarantaidis, G., & Kotropoulos, C. (2021). An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static Digital Video Recordings. Journal of Imaging, 7(10), 202. https://doi.org/10.3390/jimaging7100202