Snowglow—The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Camera Measurement System and Processing Software
2.2. Study Sites
2.2.1. Suburban Site, Ludwigsfelde, Germany
2.2.2. Remote Subarctic Site, Portimo, Finland
2.2.3. Dark Overcast Sky Reference, Saunags, Latvia
3. Results
3.1. Measurements at the Suburban Site, Ludwigsfelde, Germany
3.2. Measurements at the Subarctic Site, Portimo, Finland
3.3. Measurements at the Dark Overcast Sky Reference Site, Saunags, Latvia
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.M.; Kuester, T.; de Miguel, A.S.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegel, K.W. Light pollution. Science 1973, 179, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Schroer, S.; Hölker, F. Impact of lighting on flora and fauna. In Handbook of Advanced Lighting Technology; Springer: Cham, Switzerland, 2017; pp. 957–989. [Google Scholar]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Rich, C.; Longcore, T. (Eds.) Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Matzke, E.B. The effect of street lights in delaying leaf-fall in certain trees. Am. J. Bot. 1936, 23, 446–452. [Google Scholar] [CrossRef]
- Hölker, F.; Wurzbacher, C.; Weißenborn, C.; Monaghan, M.T.; Holzhauer, S.I.; Premke, K. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philos. Trans. R. Soc. B 2015, 370, 20140130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. Lond. B. Biol. Sci. 2015, 282, 20151745. [Google Scholar] [CrossRef] [Green Version]
- Kurvers, R.H.J.M.; Drägestein, J.; Hölker, F.; Jechow, A.; Krause, J.; Bierbach, D. Artificial Light at Night Affects Emergence from a Refuge and Space Use in Guppies. Sci. Rep. 2018, 8, 14131. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140117. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.; Ruhtz, T.; Fischer, J.; Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 2011, 6, e17307. [Google Scholar] [CrossRef] [PubMed]
- Jechow, A.; Kolláth, Z.; Ribas, S.J.; Spoelstra, H.; Hölker, F.; Kyba, C.C.M. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 2017, 7, 6741. [Google Scholar] [CrossRef] [PubMed]
- Jechow, A.; Hölker, F.; Kyba, C. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 2019, 9, 1391. [Google Scholar] [CrossRef] [PubMed]
- Jechow, A.; Hölker, F.; Kolláth, Z.; Gessner, M.O.; Kyba, C.C.M. Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Ribas, S.J.; Torra, J.; Paricio, S.; Canal-Domingo, R. How clouds are amplifying (or not) the effects of ALAN. Int. J. Sustain. Light. 2016, 18, 32–39. [Google Scholar] [CrossRef]
- Jechow, A.; Ribas, S.J.; Dmingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C.M. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Plauchu-Frayn, I.; Richer, M.G.; Colorado, E.; Herrera, J.; Córdova, A.; Ceseña, U.; Ávila, F. Night sky brightness at San Pedro Martir observatory. Publ. Astron. Soc. Pac. 2017, 129, 035003. [Google Scholar] [CrossRef]
- Jechow, A. Observing the Impact of WWF Earth Hour on Urban Light Pollution: A Case Study in Berlin 2018 Using Differential Photometry. Sustainability 2019, 11, 750. [Google Scholar] [CrossRef]
- Kolláth, Z.; Dömény, A.; Kolláth, K.; Nagy, B. Qualifying lighting remodelling in a Hungarian city based on light pollution effects. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 46–51. [Google Scholar] [CrossRef]
- Falchi, F. Campaign of sky brightness and extinction measurements using a portable CCD camera. Mon. Not. R. Astron. Soc. 2011, 412, 33–48. [Google Scholar] [CrossRef]
- Hall, D.K.; Martinec, J. Remote Sensing of Ice and Snow; Chapman and Hall: New York, NY, USA, 1985. [Google Scholar]
- Kubala, M.; Ściężor, T.; Dworak, T.Z.; Kaszowski, W. Artificial sky glow in Cracow agglomeration. Pol. J. Environ. Stud. 2009, 18, 194–199. [Google Scholar]
- Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. J. Phys. Conf. Ser. 2010, 218, 012001. [Google Scholar] [CrossRef]
- Posch, T.; Binder, F.; Puschnig, J. Systematic measurements of the night sky brightness at 26 locations in Eastern Austria. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 144–165. [Google Scholar] [CrossRef] [Green Version]
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kolláth, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar]
- Jechow, A.; Kyba, C.C.; Hölker, F. Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging. J. Imaging 2019, 5, 46. [Google Scholar] [CrossRef]
- Kyba, C.; Mohar, A.; Posch, T. How bright is moonlight? Astron. Geophys. 2017, 58, 31–32. [Google Scholar] [CrossRef]
- Kolláth, Z.; Dömény, A. Night sky quality monitoring in existing and planned dark sky parks by digital cameras. Int. J. Sustain. Light. 2017, 19, 61–68. [Google Scholar] [CrossRef]
- Garstang, R.H. Brightness of clouds at night over a city. Observatory 2007, 127, 1–3. [Google Scholar]
- Kronfeld-Schor, N.; Dominoni, D.; de la Iglesia, H.; Levy, O.; Herzog, E.D.; Dayan, T.; Helfrich-Forster, C. Chronobiology by moonlight. Proc. R. Soc. B Biol. Sci. 2013, 280, 20123088. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef]
- Kurvers, R.H.; Hölker, F. Bright nights and social interactions: A neglected issue. Behav. Ecol. 2014, 26, 334–339. [Google Scholar] [CrossRef]
- Last, K.S.; Hobbs, L.; Berge, J.; Brierley, A.S.; Cottier, F. Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr. Biol. 2016, 26, 244–251. [Google Scholar] [CrossRef] [PubMed]
Clear, No Snow | Overcast, No Snow | Overcast, Snow | Δ1 (*) | Δ2 (**) | Δ3 (***) | |
---|---|---|---|---|---|---|
Lv,zenith (mcd/m2) | 1.3 | 7.3 | 244 | 5.6 | 188 | 33 |
Ev,hor (mlx) | 7 | 22 | 790 | 3 | 113 | 36 |
Ev,hem, scal. (mlx) | 24 | 48 | 1500 | 2 | 63 | 31 |
CCTzen (K) | 3400 | 2600 | 2300 |
Clear, Snow | Overcast, Snow | Δclouds (*) | |
---|---|---|---|
Lv,zenith (mcd/m2) | 0.5 | 13 | 26 |
Ev,hor (mlx) | 2.2 | 34 | 15 |
Ev,hem, scal. (mlx) | 5.6 | 55 | 10 |
CCTzen (K) | 3100 | 1900 |
Overcast Summer | |
---|---|
Lv,zenith (mcd/m2) | 0.07 |
Ev,hor (mlx) | 0.22 |
Ev,hem, scal. (mlx) | 0.40 |
CCTzen (K) | 4500 |
Finland Overcast, Snow | ΔNAT (*) | Germany Overcast, No Snow | ΔNAT (*) | Germany Overcast, Snow | ΔNAT (*) | |
---|---|---|---|---|---|---|
Lv,zenith (mcd/m2) | 13 | 52 | 7.3 | 29 | 244 | 980 |
Latvia Overcast Reference | Finland Overcast, Snow | ΔFI, CL, SN (*) | Germany Overcast, No Snow | ΔGER, CL (**) | Germany Overcast, Snow | ΔGER, CL, SN (***) | |
---|---|---|---|---|---|---|---|
Lv,zenith (mcd/m2) | 0.07 | 13 | 185 | 7.3 | 104 | 244 | 3490 |
Ev,hor (mlx) | 0.22 | 34 | 154 | 22 | 100 | 790 | 3590 |
Ev,hem, scal. (mlx) | 0.40 | 55 | 138 | 48 | 120 | 1500 | 3750 |
CCTzen (K) | 4500 | 1900 | 2600 | 2300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jechow, A.; Hölker, F. Snowglow—The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas. J. Imaging 2019, 5, 69. https://doi.org/10.3390/jimaging5080069
Jechow A, Hölker F. Snowglow—The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas. Journal of Imaging. 2019; 5(8):69. https://doi.org/10.3390/jimaging5080069
Chicago/Turabian StyleJechow, Andreas, and Franz Hölker. 2019. "Snowglow—The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas" Journal of Imaging 5, no. 8: 69. https://doi.org/10.3390/jimaging5080069
APA StyleJechow, A., & Hölker, F. (2019). Snowglow—The Amplification of Skyglow by Snow and Clouds Can Exceed Full Moon Illuminance in Suburban Areas. Journal of Imaging, 5(8), 69. https://doi.org/10.3390/jimaging5080069