Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal
Abstract
:1. Introduction
2. Experimental Setup
3. Data Analysis
3.1. Particle Location
3.2. Trajectories (Track Linking)
- At the start of the movie (i.e., frame 1), we assume that the velocity of each microparticle is 0. This is equivalent to the quasi-static approximation. For MCI-induced melting studies, the video usually starts when the monolayer is still in the crystalline phase, and it is therefore not a bad approximation.
- If a new particle appears in frame that was not in frame , then the newly-appearing particle borrows the velocity of the closest particle already present in frame .
3.3. Comparison of the Tracking Methods, Evolution of the Particle Monolayer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouchoule, A. Dusty Plasmas: Physics, Chemistry and Technological impacts in Plasma Processing; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Shukla, P.K.; Mamun, A.A. Introduction to Dusty Plasma; IOP Publishing: Bristol, UK, 2002. [Google Scholar]
- Morfill, G.E.; Ivlev, A.V. Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 2009, 81, 1353–1404. [Google Scholar] [CrossRef]
- Brattli, A.; Havnes, O. Cooling by dust in levitation experiments and its effect on dust cloud equilibrium profiles. J. Vac. Sci. Technol. A 1996, 14, 644–648. [Google Scholar] [CrossRef]
- Samarian, A.A.; James, B.W. Sheath measurement in rf-discharge plasma with dust grains. Phys. Lett. A 2001, 287, 125–130. [Google Scholar] [CrossRef]
- Dubin, D.H.E. The phonon wake behind a charge moving relative to a two-dimensional plasma crystal. Phys. Plasmas 2000, 7, 3895–3903. [Google Scholar] [CrossRef]
- Melzer, A.; Nunomura, S.; Samsonov, D.; Ma, Z.W.; Goree, J. Laser-excited Mach cones in a dusty plasma crystal. Phys. Rev. E 2000, 62, 4162–4176. [Google Scholar] [CrossRef]
- Nunomura, S.; Samsonov, D.; Goree, J. Transverse Waves in a Two-Dimensional Screened-Coulomb Crystal (Dusty Plasma). Phys. Rev. Lett. 2000, 84, 5141–5144. [Google Scholar] [CrossRef] [PubMed]
- Samsonov, D.; Goree, J.; Thomas, H.M.; Morfill, G.E. Mach cone shocks in a two-dimensional Yukawa solid using a complex plasma. Phys. Rev. E 2000, 61, 5557–5572. [Google Scholar] [CrossRef]
- Chu, J.H.; I, L. Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 1994, 72, 4009–4012. [Google Scholar] [CrossRef]
- Thomas, H.; Morfill, G.E.; Demmel, V.; Goree, J.; Feuerbacher, B.; Möhlmann, D. Plasma Crystal: Coulomb Crystallization in a Dusty Plasma. Phys. Rev. Lett. 1994, 73, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Schweigert, V.A.; Schweigert, I.V.; Melzer, A.; Homann, A.; Piel, A. Plasma Crystal Melting: A Nonequilibrium Phase Transition. Phys. Rev. Lett. 1998, 80, 5345–5348. [Google Scholar] [CrossRef]
- Melzer, A.; Homann, A.; Piel, A. Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 1996, 53, 2757–2766. [Google Scholar] [CrossRef]
- Melzer, A.; Schweigert, V.A.; Schweigert, I.V.; Homann, A.; Peters, S.; Piel, A. Structure and stability of the plasma crystal. Phys. Rev. E 1996, 54, R46–R49. [Google Scholar] [CrossRef]
- Thomas, H.M.; Morfill, G.E. Melting dynamics of a plasma crystal. Nature 1996, 379, 806–809. [Google Scholar] [CrossRef]
- Nosenko, V.; Zhdanov, S.; Ivlev, A.V.; Morfill, G.; Goree, J.; Piel, A. Heat Transport in a Two-Dimensional Complex (Dusty) Plasma at Melting Conditions. Phys. Rev. Lett. 2008, 100, 025003. [Google Scholar] [CrossRef]
- Samsonov, D.; Zhdanov, S.; Morfill, G. Vertical wave packets observed in a crystallized hexagonal monolayer complex plasma. Phys. Rev. E 2005, 71, 026410. [Google Scholar] [CrossRef]
- Qiao, K.; Hyde, T.W. Dispersion properties of the out-of-plane transverse wave in a two-dimensional Coulomb crystal. Phys. Rev. E 2003, 68, 046403. [Google Scholar] [CrossRef]
- Liu, B.; Avinash, K.; Goree, J. Transverse Optical Mode in a One-Dimensional Yukawa Chain. Phys. Rev. Lett. 2003, 91, 255003. [Google Scholar] [CrossRef]
- Couëdel, L.; Nosenko, V.; Zhdanov, S.K.; Ivlev, A.V.; Thomas, H.M.; Morfill, G.E. First Direct Measurement of Optical Phonons in 2D Plasma Crystals. Phys. Rev. Lett. 2009, 103, 215001. [Google Scholar] [CrossRef] [PubMed]
- Nunomura, S.; Goree, J.; Hu, S.; Wang, X.; Bhattacharjee, A.; Avinash, K. Phonon Spectrum in a Plasma Crystal. Phys. Rev. Lett. 2002, 89, 035001. [Google Scholar] [CrossRef] [PubMed]
- Nunomura, S.; Zhdanov, S.; Morfill, G.E.; Goree, J. Nonlinear longitudinal waves in a two-dimensional screened Coulomb crystal. Phys. Rev. E 2003, 68, 026407. [Google Scholar] [CrossRef] [PubMed]
- Nunomura, S.; Zhdanov, S.; Samsonov, D.; Morfill, G. Wave Spectra in Solid and Liquid Complex (Dusty) Plasmas. Phys. Rev. Lett. 2005, 94, 045001. [Google Scholar] [CrossRef]
- Ishihara, O.; Vladimirov, S.V. Wake potential of a dust grain in a plasma with ion flow. Phys. Plasmas 1997, 4, 69–74. [Google Scholar] [CrossRef]
- Nunomura, S.; Misawa, T.; Ohno, N.; Takamura, S. Instability of Dust Particles in a Coulomb Crystal due to Delayed Charging. Phys. Rev. Lett. 1999, 83, 1970–1973. [Google Scholar] [CrossRef]
- Melzer, A.; Schweigert, V.A.; Piel, A. Measurement of the Wakefield Attraction for “Dust Plasma Molecules”. Phys. Scr. 2000, 61, 494. [Google Scholar] [CrossRef]
- Hebner, G.A.; Riley, M.E. Structure of the ion wakefield in dusty plasmas. Phys. Rev. E 2004, 69, 026405. [Google Scholar] [CrossRef]
- Ivlev, A.V.; Morfill, G. Anisotropic dust lattice modes. Phys. Rev. E 2000, 63, 016409. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, S.K.; Ivlev, A.V.; Morfill, G.E. Mode-coupling instability of 2D plasma crystals. Phys. Plasmas 2009, 16, 083706. [Google Scholar] [CrossRef]
- Couëdel, L.; Zhdanov, S.K.; Ivlev, A.V.; Nosenko, V.; Thomas, H.M.; Morfill, G.E. Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-Depth view. Phys. Plasmas 2011, 18, 083707. [Google Scholar] [CrossRef]
- Ivlev, A.V.; Zhdanov, S.K.; Lampe, M.; Morfill, G.E. Mode-Coupling Instability in a Fluid Two-Dimensional Complex Plasma. Phys. Rev. Lett. 2014, 113, 135002. [Google Scholar] [CrossRef] [PubMed]
- Röcker, T.B.; Couëdel, L.; Zhdanov, S.K.; Nosenko, V.; Ivlev, A.V.; Thomas, H.M.; Morfill, G.E. Nonlinear regime of the mode-coupling instability in 2D plasma crystals. EPL (Europhys. Lett.) 2014, 106, 45001. [Google Scholar] [CrossRef]
- Couëdel, L.; Zhdanov, S.; Nosenko, V.; Ivlev, A.V.; Thomas, H.M.; Morfill, G.E. Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal. Phys. Rev. E 2014, 89, 053108. [Google Scholar] [CrossRef] [PubMed]
- Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A.V. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating. Phys. Rev. E 2018, 97, 043206. [Google Scholar] [CrossRef]
- Kryuchkov, N.P.; Yakovlev, E.V.; Gorbunov, E.A.; Couëdel, L.; Lipaev, A.M.; Yurchenko, S.O. Thermoacoustic Instability in Two-Dimensional Fluid Complex Plasmas. Phys. Rev. Lett. 2018, 121, 075003. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.O.; Yakovlev, E.V.; Couëdel, L.; Kryuchkov, N.P.; Lipaev, A.M.; Naumkin, V.N.; Kislov, A.Y.; Ovcharov, P.V.; Zaytsev, K.I.; Vorob’ev, E.V.; et al. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas. Phys. Rev. E 2017, 96, 043201. [Google Scholar] [CrossRef]
- Ticoş, C.M.; Toader, D.; Munteannu, M.L.; Banu, N.; Scurtu, A. High-speed imaging of dust particles in plasma. J. Plasma Phys. 2013, 79, 273–285. [Google Scholar] [CrossRef]
- Nosenko, V.; Goree, J.; Ma, Z.; Dubin, D.; Piel, A. Compressional and shear wakes in a two-dimensional dusty plasma crystal. Phys. Rev. E 2003, 68, 056409. [Google Scholar] [CrossRef]
- Thomas, E. Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 1999, 6, 2672–2675. [Google Scholar] [CrossRef]
- Thomas, E.; Williams, J. Applications of stereoscopic particle image velocimetry: Dust acoustic waves and velocity space distribution functions. Phys. Plasmas 2006, 13, 055702. [Google Scholar] [CrossRef]
- Thomas, E.; Williams, J.D.; Silver, J. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma. Phys. Plasmas 2004, 11, L37–L40. [Google Scholar] [CrossRef]
- Williams, J.D.; Thomas, E.; Couëdel, L.; Ivlev, A.V.; Zhdanov, S.K.; Nosenko, V.; Thomas, H.M.; Morfill, G.E. Kinetics of the melting front in two-dimensional plasma crystals: Complementary analysis with the particle image and particle tracking velocimetries. Phys. Rev. E 2012, 86, 046401. [Google Scholar] [CrossRef]
- Durniak, C.; Samsonov, D. Plastic Deformations in Complex Plasmas. Phys. Rev. Lett. 2011, 106, 175001. [Google Scholar] [CrossRef] [PubMed]
- Nosenko, V.; Zhdanov, S.; Morfill, G. Supersonic Dislocations Observed in a Plasma Crystal. Phys. Rev. Lett. 2007, 99, 025002. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, S.K.; Thoma, M.H.; Knapek, C.A.; Morfill, G.E. Compact dislocation clusters in a two-dimensional highly ordered complex plasma. New J. Phys. 2012, 14, 023030. [Google Scholar] [CrossRef]
- Couëdel, L.; Nosenko, V.; Ivlev, A.V.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E. Direct Observation of Mode-Coupling Instability in Two-Dimensional Plasma Crystals. Phys. Rev. Lett. 2010, 104, 195001. [Google Scholar] [CrossRef] [PubMed]
- Laut, I.; Räth, C.; Zhdanov, S.; Nosenko, V.; Couëdel, L.; Thomas, H.M. Synchronization of particle motion in compressed two-dimensional plasma crystals. EPL (Europhys. Lett.) 2015, 110, 65001. [Google Scholar] [CrossRef]
- Nosenko, V.; Zhdanov, S.K.; Carmona-Reyes, J.; Hyde, T.W. Mode-coupling instability in a single-layer complex plasma crystal: Strong damping regime. Phys. Plasmas 2018, 25, 093702. [Google Scholar] [CrossRef]
- Crocker, J.C.; Grier, D.G. Methods of Digital Video Microscopy for Colloidal Studies. J. Colloid Interface Sci. 1996, 179, 298–310. [Google Scholar] [CrossRef]
- Rogers, S.S.; Waigh, T.A.; Zhao, X.; Lu, J.R. Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight. Phys. Biol. 2007, 4, 220–227. [Google Scholar] [CrossRef]
- Chenouard, N.; Smal, I.; De Chaumont, F.; Maška, M.; Sbalzarini, I.F.; Gong, Y.; Cardinale, J.; Carthel, C.; Coraluppi, S.; Winter, M.; et al. Objective comparison of particle tracking methods. Nat. Methods 2014, 11, 281. [Google Scholar] [CrossRef]
- van der Wel, C.; Kraft, D.J. Automated tracking of colloidal clusters with sub-pixel accuracy and precision. J. Phys. Condens. Matter 2017, 29, 044001. [Google Scholar] [CrossRef]
- Boessé, C.; Henry, M.; Hyde, T.; Matthews, L. Digital imaging and analysis of dusty plasmas. Adv. Space Res. 2004, 34, 2374–2378. [Google Scholar] [CrossRef]
- Feng, Y.; Goree, J.; Liu, B. Accurate particle position measurement from images. Rev. Sci. Instrum. 2007, 78, 053704. [Google Scholar] [CrossRef]
- Feng, Y.; Goree, J.; Liu, B. Errors in particle tracking velocimetry with high-speed cameras. Rev. Sci. Instrum. 2011, 82, 053707. [Google Scholar] [CrossRef]
- Oxtoby, N.P.; Ralph, J.F.; Samsonov, D.; Durniak, C. Tracking interacting dust: Comparison of tracking and state estimation techniques for dusty plasmas. In Signal and Data Processing of Small Targets, Proceedings of the 2010 International Society for Optics and Photonics, Orlando, FL, USA, 6–8 April 2010; SPIE: Philadelphia, PA, USA, 2010; Volume 7698, p. 76980C. [Google Scholar]
- Goree, J.; Liu, B.; Feng, Y. Diagnostics for transport phenomena in strongly coupled dusty plasmas. Plasma Phys. Control. Fusion 2013, 55, 124004. [Google Scholar] [CrossRef]
- Meijering, E.; Dzyubachyk, O.; Smal, I. Methods for cell and particle tracking. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 504, pp. 183–200. [Google Scholar]
- Nosenko, V.; Ivlev, A.V.; Zhdanov, S.K.; Fink, M.; Morfill, G.E. Rotating electric fields in complex (dusty) plasmas. Phys. Plasmas 2009, 16, 083708. [Google Scholar] [CrossRef]
- Allan, D.B.; Caswell, T.; Keim, N.C.; van der Wel, C.M. Trackpy: Fast, Flexible Particle-Tracking Toolkit. 2018. Available online: http://soft-matter.github.io/trackpy/v0.4.1/index.html (accessed on 12 March 2019).
- Ivlev, A.; Röcker, T.; Vasyunin, A.; Caselli, P. Impulsive spot heating and thermal explosion of interstellar grains revisited. Astrophys. J. 2015, 805, 59. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couëdel, L.; Nosenko, V. Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal. J. Imaging 2019, 5, 41. https://doi.org/10.3390/jimaging5030041
Couëdel L, Nosenko V. Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal. Journal of Imaging. 2019; 5(3):41. https://doi.org/10.3390/jimaging5030041
Chicago/Turabian StyleCouëdel, Lénaïc, and Vladimir Nosenko. 2019. "Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal" Journal of Imaging 5, no. 3: 41. https://doi.org/10.3390/jimaging5030041
APA StyleCouëdel, L., & Nosenko, V. (2019). Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal. Journal of Imaging, 5(3), 41. https://doi.org/10.3390/jimaging5030041