In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Microstructural Characterization
2.2. Furnace Setup and Sample Installation
2.3. Neutron Imaging
3. Results
3.1. Microstructural Characterization Using Electron Microscopy
3.2. Neutron Imaging
4. Discussion
4.1. Microstructure
4.2. Neutron Imaging
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Lin, S.-J.; Chin, T.-S.; Gan, J.-Y.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chou, S.-Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 2004, 35, 2533–2536. [Google Scholar] [CrossRef]
- Hsu, C.; Yeh, J.; Chen, S.; Shun, T. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 2004, 35, 1465–1469. [Google Scholar] [CrossRef]
- Chen, T.K.; Wong, M.S.; Shun, T.T.; Yeh, J.W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2005, 200, 1361–1365. [Google Scholar] [CrossRef]
- Huang, P.; Yeh, J.-W.; Shun, T.-T.; Chen, S.-K. Multi-Principal Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C. Accelerated exploration of multi-principal element alloys for structural applications. Comput. Coupling Phase Diagrams Thermochem. 2015, 50, 32–48. [Google Scholar] [CrossRef]
- King, D.J.M.; Middleburgh, S.C.; McGregor, A.G.; Cortie, M.B. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 2016, 104, 172–179. [Google Scholar] [CrossRef]
- Toda-Caraballo, I.; Rivera-Díaz-del-Castillo, P.E.J. A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 2016, 71, 76–87. [Google Scholar] [CrossRef]
- Liu, X.J.; Jiang, Z.P.; Wang, C.P.; Ishida, K. Experimental determination and thermodynamic calculation of the phase equilibria in the Cu–Cr–Nb and Cu–Cr–Co systems. J. Alloys Compd. 2009, 478, 287–296. [Google Scholar] [CrossRef]
- Nishizawa, T.; Ishida, K. The Co-Cu (Cobalt-Copper) system. J. Phase Equilib. 1984, 5, 161–165. [Google Scholar] [CrossRef]
- Munitz, A.; Abbaschian, R. Two-melt separation in supercooled Cu-Co alloys solidifying in a drop-tube. J. Mater. Sci. 1991, 26, 6458–6466. [Google Scholar] [CrossRef]
- Munitz, A.; Elder-Randall, S.P.; Abbaschian, R. Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates. Metall. Trans. A 1992, 23, 1817–1827. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Gao, J.; Nagamatsu, D.; Fukuda, T.; Yasuda, H.; Kolbe, M.; He, J.C. Reduced droplet coarsening in electromagnetically levitated and phase-separated Cu-Co alloys by imposition of a static magnetic field. Scr. Mater. 2008, 59, 1002–1005. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Gao, J.; Yang, C.; Kolbe, M.; Binder, S.; Herlach, D.M. Asynchronous crystallization behavior of Co-rich droplets in phase-separated Cu-Co alloys. Mater. Lett. 2012, 73, 56–58. [Google Scholar] [CrossRef]
- Munitz, A.; Venkert, A.; Landau, P.; Kaufman, M.J.; Abbaschian, R. Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. J. Mater. Sci. 2012, 47, 7955–7970. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Yasuda, H.; Kolbe, M.; Wilde, G. Particle size distribution and composition in phase-separated Cu75Co25 alloys under various magnetic fields. Scr. Mater. 2014, 82, 5–8. [Google Scholar] [CrossRef]
- Chuang, Y.Y.; Schmid, R.; Chang, Y.A. Thermodynamic analysis of the iron-copper system I: The stable and metastable phase equilibria. Metall. Trans. A 1984, 15, 1921–1930. [Google Scholar] [CrossRef]
- Munitz, A. Metastable liquid phase separation in tungsten inert gas and electron beam copper/stainless-steel welds. J. Mater. Sci. 1995, 30, 2901–2910. [Google Scholar] [CrossRef]
- Yamauchi, I.; Irie, T.; Sakaguchi, H. Metastable liquid separation in undercooled Fe-Cu and Fe-Cu-Si melts containing a small B concentration and their solidification structure. J. Alloys Compd. 2005, 403, 211–216. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Liu, F.; Yang, G.C.; Xu, X.Q.; Zhou, Y.H. Rapid solidification of bulk undercooled hypoperitectic Fe-Cu alloy. J. Alloys Compd. 2007, 427, 3–7. [Google Scholar] [CrossRef]
- Curiotto, S.; Battezzati, L.; Johnson, E.; Palumbo, M.; Pryds, N. The liquid metastable miscibility gap in the Cu-Co-Fe system. J. Mater. Sci. 2008, 43, 3253–3258. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, Y.H.; Cui, X. C.; Lin, J.B. The growth and congregation of minor phase in immiscible Cu-Fe alloys. Medziagotyra 2013, 19, 373–376. [Google Scholar] [CrossRef]
- Ellis, T.W.; Anderson, I.E.; Downing, H.L.; Verhoeven, J.D. Deformation-processed wire prepared from gas-atomized Cu-Nb alloy powders. Metall. Trans. A 1993, 24, 21–26. [Google Scholar] [CrossRef]
- Munitz, A.; Abbachian, R.; Cotler, C.; Shacham, C. Liquid Phase Separation in Cu-Co-Fe and Cu-Fe-Ni-Cr Alloys. High Temp. Mater. Process. 1996, 15, 187–194. [Google Scholar] [CrossRef]
- Kim, D. I.; Abbaschian, R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J. Phase Equilib. 2000, 21, 25–31. [Google Scholar] [CrossRef]
- Cao, C.-D.; Görler, G.P. Direct Measurement of the Metastable Liquid Miscibility Gap in Fe–Co–Cu Ternary Alloy System. Chin. Phys. Lett. 2005, 22, 482–484. [Google Scholar]
- Munitz, A.; Kaufman, M. J.; Abbaschian, R. Liquid phase separation in transition element high entropy alloys. Intermetallics 2017, 86, 59–72. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef]
- Park, N.; Watanabe, I.; Terada, D.; Yokoyama, Y.; Liaw, P.K.; Tsuji, N. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy. Metall. Mater. Trans. A 2015, 46, 1481–1487. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Wu, P.H.; Zhou, P.J.; Peng, Z.; Wang, X.J.; Lu, Y.P. Rapid solidification and liquid-phase separation of undercooled CoCrCuFexNi high-entropy alloys. Intermetallics 2016, 72, 44–52. [Google Scholar] [CrossRef]
- Wang, W.L.; Hu, L.; Luo, S.B.; Meng, L.J.; Geng, D.L.; Wei, B. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy. Intermetallics 2016, 77, 41–45. [Google Scholar] [CrossRef]
- Wu, P.H.; Liu, N.; Zhou, P.J.; Peng, Z.; Du, W.D.; Wang, X.J.; Pan, Y. Microstructures and liquid phase separation in multicomponent CoCrCuFeNi high entropy alloys. Mater. Sci. Technol. 2016, 32, 576–580. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys. Mater. Sci. Eng. A 2007, 454, 260–265. [Google Scholar] [CrossRef]
- Wu, P. H.; Liu, N.; Yang, W.; Zhu, Z. X.; Lu, Y. P.; Wang, X. J. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys. Mater. Sci. Eng. A 2015, 642, 142–149. [Google Scholar] [CrossRef]
- Wang, X.F.; Zhang, Y.; Qiao, Y.; Chen, G.L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007, 15, 357–362. [Google Scholar] [CrossRef]
- Anderson, I.S.; McGreevy, R.L.; Bilheux, H.Z. Neutron Imaging and Applications; 2009; ISBN 978-0-387-78692-6. Available online: https://link.springer.com/book/10.1007/978-0-387-78693-3#about (accessed on 22 December 2017).
HEA | References |
---|---|
CoCrCuFeMn | [30] |
CoCrCuFeNi | [29,31,32,33,34] |
CoCrCuFeMnNiTiV | [35] |
CoCrCuFeMoNi | [36] |
CoCrCuFeNiTi | [37] |
Composition | Density (g/cm3) | Transmission Δx = 4 mm | Transmission Δx = 8 mm |
---|---|---|---|
Co | 8.9 | 12% | 1% |
Cr | 7.2 | 77% | 59% |
Cu | 9.0 | 63% | 40% |
CoCr | 8.0 | 31% | 10% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derimow, N.A.; Santodonato, L.J.; Mills, R.; Abbaschian, R. In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons. J. Imaging 2018, 4, 5. https://doi.org/10.3390/jimaging4010005
Derimow NA, Santodonato LJ, Mills R, Abbaschian R. In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons. Journal of Imaging. 2018; 4(1):5. https://doi.org/10.3390/jimaging4010005
Chicago/Turabian StyleDerimow, Nicholas Alexander, Louis Joseph Santodonato, Rebecca Mills, and Reza Abbaschian. 2018. "In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons" Journal of Imaging 4, no. 1: 5. https://doi.org/10.3390/jimaging4010005
APA StyleDerimow, N. A., Santodonato, L. J., Mills, R., & Abbaschian, R. (2018). In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons. Journal of Imaging, 4(1), 5. https://doi.org/10.3390/jimaging4010005