Image-Guided Cancer Nanomedicine
Abstract
:1. Nanomedicine
2. Current Limitations of Nanomedicine
3. Image Guided Cancer Nanomedicine: A New Opportunity
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures; American Cancer Society: Atlanta, GA, USA, 2017. [Google Scholar]
- Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Rutka, J.T.; Chan, W.C. Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Thu, M.S.; Bryant, L.H.; Coppola, T.; Jordan, E.K.; Budde, M.D.; Lewis, B.K.; Chaudhry, A.; Ren, J.; Varma, N.R.; Arbab, A.S.; et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat. Med. 2012, 18, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Nahrendorf, M.; Pittet, M.J. Imaging macrophages with nanoparticles. Nat. Mater. 2014, 13, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Nejadnik, H.; Gawande, R.; Lin, G.T.; Lee, S.; Messing, S.; Castaneda, R.; Derugin, N.; Pisani, L.; Lue, T.F.; et al. Intravenous Ferumoxytol Allows Noninvasive MR Imaging Monitoring of Macrophage Migration into Stem Cell Transplants. Radiology 2012, 264, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Nikles, D.E.; Johnson, D.T.; Brazel, C.S. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J. Magn. Magn. Mater. 2008, 320, 2390–2396. [Google Scholar] [CrossRef]
- Kim, D.H.; Nikles, D.E.; Brazel, C.S. Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials 2010, 3, 4051–4065. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Nehl, C.L.; Hafner, J.H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Cho, S.; Huang, X.; Larson, A.C.; Kim, D.H. Branched Gold Nanoparticle Coating of Clostridium novyi-NT Spores for CT-Guided Intratumoral Injection. Small 2017, 13. [Google Scholar] [CrossRef]
- Kim, D.H.; Rozhkova, E.A.; Ulasov, I.V.; Bader, S.D.; Rajh, T.; Lesniak, M.S.; Novosad, V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010, 9, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Vitol, E.A.; Liu, J.; Balasubramanian, S.; Gosztola, D.J.; Cohen, E.E.; Novosad, V.; Rozhkova, E.A. Stimuli-Responsive Magnetic Nanomicelles as Multifunctional Heat and Cargo Delivery Vehicles. Langmuir 2013, 29, 7425–7432. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.J.; Gordon, A.C.; Larson, A.C.; Chung, J.W.; Kim, Y.I.; Kim, D.H. Transcatheter intra-arterial infusion of doxorubicin loaded porous magnetic nano-clusters with iodinated oil for the treatment of liver cancer. Biomaterials 2016, 88, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Guo, Y.; Zhang, Z.; Procissi, D.; Nicolai, J.; Omary, R.A.; Larson, A.C. Temperature-sensitive magnetic drug carriers for concurrent gemcitabine chemohyperthermia. Adv. Healthc. Mater. 2014, 3, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kim, D.H.; Guo, Y.; Teng, Z.G.; Li, Y.J.; Zheng, L.F.; Zhang, Z.L.; Larson, A.C.; Lu, G.M. A c(RGDfE) conjugated multi-functional nanomedicine delivery system for targeted pancreatic cancer therapy. J. Mater. Chem. B 2015, 3, 1049–1058. [Google Scholar] [CrossRef]
- Lee, J.; Gordon, A.C.; Kim, H.; Park, W.; Cho, S.; Lee, B.; Larson, A.C.; Rozhkova, E.A.; Kim, D.H. Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials 2016, 109, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Nanotechnology Fact Sheet. Available online: https://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm402230.htm (accessed on 10 January 2018).
- Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- McNeil, S.E. Evaluation of nanomedicines: Stick to the basics. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Wilhelm, S.; Tavares, A.J.; Chan, W.C.W. Reply to “Evaluation of nanomedicines: Stick to the basics”. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Silverman, S.G.; Deuson, T.E.; Kane, N.; Adams, D.F.; Seltzer, S.E.; Phillips, M.D.; Khorasani, R.; Zinner, M.J.; Holman, B.L. Percutaneous abdominal biopsy: Cost-identification analysis. Radiology 1998, 206, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Link, R.E.; Permpongkosol, S.; Gupta, A.; Jarrett, T.W.; Solomon, S.B.; Kavoussi, L.R. Cost analysis of open, laparoscopic, and percutaneous treatment options for nephron-sparing surgery. J. Endourol. 2006, 20, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.B.; Silverman, S.G. Imaging in interventional oncology. Radiology 2010, 257, 624–640. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Chen, J.; Omary, R.A.; Larson, A.C. MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors. Theranostics 2015, 5, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Choy, T.; Huang, S.; Green, R.M.; Omary, R.A.; Larson, A.C. Microfluidic fabrication of 6-methoxyethylamino numonafide-eluting magnetic microspheres. Acta Biomater. 2014, 10, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Cho, S.; Han, J.; Shin, H.; Na, K.; Lee, B.; Kim, D.H. Advanced smart-photosensitizers for more effective cancer treatment. Biomater. Sci. 2018, 6, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; White, S.B.; Harris, K.R.; Li, W.; Yap, J.W.; Kim, D.H.; Lewandowski, R.J.; Shea, L.D.; Larson, A.C. Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. Biomaterials 2015, 61, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Tomitaka, A.; Arami, H.; Raymond, A.; Yndart, A.; Kaushik, A.; Jayant, R.D.; Takemura, Y.; Cai, Y.; Toborek, M.; Nair, M. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale 2017, 9, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Park, W.; Kim, D.H. Silica-Coated Metal Chelating-Melanin Nanoparticles as a Dual-Modal Contrast Enhancement Imaging and Therapeutic Agent. ACS Appl. Mater. Interfaces 2017, 9, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Detappe, A.; Thomas, E.; Tibbitt, M.W.; Kunjachan, S.; Zavidij, O.; Parnandi, N.; Reznichenko, E.; Lux, F.; Tillement, O.; Berbeco, R. Ultrasmall Silica-Based Bismuth Gadolinium Nanoparticles for Dual Magnetic Resonance-Computed Tomography Image Guided Radiation Therapy. Nano Lett. 2017, 17, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Bozeman, E.N.; Qian, W.; Wang, L.; Chen, H.; Lipowska, M.; Staley, C.A.; Wang, Y.A.; Mao, H.; Yang, L. Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery. Theranostics 2017, 7, 1689–1704. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Qian, W.; Uckun, F.M.; Wang, L.; Wang, Y.A.; Chen, H.; Kooby, D.; Yu, Q.; Lipowska, M.; Staley, C.A.; et al. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer. ACS Nano 2015, 9, 7976–7991. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Li, W.; Chen, J.; Zhang, Z.; Green, R.M.; Huang, S.; Larson, A. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Chen, J.; Cho, S.; Park, S.J.; Larson, A.C.; Na, K.; Kim, D.H. Acidic pH-Triggered Drug-Eluting Nanocomposites for Magnetic Resonance Imaging-Monitored Intra-arterial Drug Delivery to Hepatocellular Carcinoma. ACS Appl. Mater. Interfaces 2016, 8, 12711–12719. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chi, C.; Liu, M.; Guo, H.; Zhang, Z.; Zeng, C.; Ye, J.; Wang, J.; Tian, J.; Yang, W.; et al. Nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging allows precise image-guided tumor-removal surgery. Nanomedicine 2017, 13, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, T.Y.; Luo, Y.; Liu, Q.; Xiao, W.; Guo, W.; Lac, D.; Zhang, H.; Feng, C.; Wachsmann-Hogiu, S.; et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Larson, A.C. Deoxycholate bile acid directed synthesis of branched Au nanostructures for near infrared photothermal ablation. Biomaterials 2015, 56, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Cho, S.; Procissi, D.; Larson, A.C.; Kim, D.H. Non-invasive monitoring of branched Au nanoparticle-mediated photothermal ablation. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 2352–2359. [Google Scholar] [CrossRef] [PubMed]
- White, S.B.; Kim, D.H.; Guo, Y.; Li, W.; Yang, Y.; Chen, J.; Gogineni, V.R.; Larson, A.C. Biofunctionalized Hybrid Magnetic Gold Nanoparticles as Catalysts for Photothermal Ablation of Colorectal Liver Metastases. Radiology 2017, 285, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Gordon, A.C.; Cho, S.; Huang, X.; Harris, K.R.; Larson, A.C.; Kim, D.H. Immunomodulatory Magnetic Microspheres for Augmenting Tumor-Specific Infiltration of Natural Killer (NK) Cells. ACS Appl. Mater. Interfaces 2017, 9, 13819–13824. [Google Scholar] [CrossRef] [PubMed]
Therapeutics | Cancer | Imaging | Nanoparticles | References |
---|---|---|---|---|
Image-guided Delivery | Brain cancer [30] Prostate cancer [31] | MRI/CT [30] MRI/fluorescent [31] | Hybrid iron oxide/gold [30] Silica/melanin nanoparticles [31] | [30,31] |
Image-guided radiation | Lung carcinoma [32] | MRI/CT [32] | Bismuth/gadolinium [32] | [32] |
Image-guided drug delivery | peritoneal tumors [33] pancreatic tumors [16,34] Hepatocellular carcinoma [35,36] | MRI [33] MRI [16,34,36] MRI/CT [35] | Iron oxide nanoparticles [33] Iron oxide nanoparticles [16,34,36] Iron oxide/gold nanoparticles [35] | [16,33,34,35,36] |
Image-guided surgery | Breast cancer and hepatocellular carcinoma [37] Liver cancer [18] | Radio-fluorescent [37] MRI/Luminescent [18] | Europium oxide nanoparticle [37] Upconversion nanoparticles [18] | [18,37] |
Image-guided photodynamic therapy | Ovarian cancer [38] | Near-infrared fluorescence imaging (NIRFI), MRI, PET [38] | Nanoporphyrin [38] | [38] |
Image-guided photothermal therapy | Pancreatic cancer [39] Prostate cancer [40] Colorectal cancer [41] | fluorescent [39] MRI [40] MRI [41] | Branched gold nanoparticles [39] Gold nanoparticles [40] Hybrid gold/iron oxide nanoparticles [41] | [39,40,41] |
Image-guided immunotherapy | Liver cancer [42] | MRI [42] | Iron oxide nanocubes [42] | [42] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H. Image-Guided Cancer Nanomedicine. J. Imaging 2018, 4, 18. https://doi.org/10.3390/jimaging4010018
Kim D-H. Image-Guided Cancer Nanomedicine. Journal of Imaging. 2018; 4(1):18. https://doi.org/10.3390/jimaging4010018
Chicago/Turabian StyleKim, Dong-Hyun. 2018. "Image-Guided Cancer Nanomedicine" Journal of Imaging 4, no. 1: 18. https://doi.org/10.3390/jimaging4010018
APA StyleKim, D. -H. (2018). Image-Guided Cancer Nanomedicine. Journal of Imaging, 4(1), 18. https://doi.org/10.3390/jimaging4010018