Combined CCTA and Stress CTP for Anatomical and Functional Assessment of Myocardial Bridges
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Scan Protocol
2.3. CCTA Analysis
2.4. Stress Dynamic CT-MPI Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. CCTA and Stress Dynamic CTP Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, W.; Charles, S.M.; Ang, C.; Holda, M.K.; Walocha, J.; Lachman, N.; Tubbs, R.S.; Loukas, M. Myocardial Bridges: A Meta-Analysis. Clin. Anat. 2021, 34, 685–709. [Google Scholar] [CrossRef]
- Kikuchi, S.; Okada, K.; Hibi, K.; Maejima, N.; Matsuzawa, Y.; Konishi, M.; Kimura, Y.; Kosuge, M.; Iwahashi, N.; Ebina, T.; et al. Myocardial Infarction Caused by Accelerated Plaque Formation Related to Myocardial Bridge in a Young Man. Can. J. Cardiol. 2018, 34, 1687.E13–1687.E15. [Google Scholar] [CrossRef]
- Sternheim, D.; Power, D.A.; Samtani, R.; Kini, A.; Fuster, V.; Sharma, S. Myocardial Bridging: Diagnosis, Functional Assessment, and Management: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 2196–2212. [Google Scholar] [CrossRef]
- Santucci, A.; Jacoangeli, F.; Cavallini, S.; d’Ammando, M.; de Angelis, F.; Cavallini, C. The Myocardial Bridge: Incidence, Diagnosis, and Prognosis of a Pathology of Uncertain Clinical Significance. Eur. Heart J. Suppl. 2022, 24, I61–I67. [Google Scholar] [CrossRef]
- Sara, J.D.S.; Corban, M.T.; Prasad, M.; Prasad, A.; Gulati, R.; Lerman, L.O.; Lerman, A. Prevalence of Myocardial Bridging Associated with Coronary Endothelial Dysfunction in Patients with Chest Pain and Non-Obstructive Coronary Artery Disease. EuroIntervention 2020, 15, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Lee, H.; Her, K.; Park, H.W.; Shin, K.E. Myocardial CT Perfusion Imaging for Pre- and Postoperative Evaluation of Myocardial Ischemia in a Patient with Myocardial Bridging: A Case Report. Medicine 2017, 96, e8277. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Migliore, F.; Cademartiri, F.; Fraccaro, C.; Iliceto, S. Left Anterior Descending Artery Myocardial Bridging: A Clinical Approach. J. Am. Coll. Cardiol. 2016, 68, 2887–2899. [Google Scholar] [CrossRef] [PubMed]
- Schicchi, N.; Fogante, M.; Paolini, E.; Cela, F.; Pirani, P.E.; Perna, G.P. Stress-Rest Dynamic-CT Myocardial Perfusion Imaging in the Management of Myocardial Bridging: A “One-Stop Shop” Exam. J. Cardiol. Cases 2023, 28, 229–232. [Google Scholar] [CrossRef]
- Li, C.; Xu, R.; Yao, K.; Zhang, J.; Chen, S.; Pang, L.; Lu, H.; Dai, Y.; Qian, J.; Shi, H.; et al. Functional Significance of Intermediate Coronary Stenosis in Patients with Single-Vessel Coronary Artery Disease: A Comparison of Dynamic SPECT Coronary Flow Reserve with Intracoronary Pressure-Derived Fractional Flow Reserve (FFR). J. Nucl. Cardiol. 2022, 29, 622–629. [Google Scholar] [CrossRef]
- Seitun, S.; De Lorenzi, C.; Cademartiri, F.; Buscaglia, A.; Travaglio, N.; Balbi, M.; Bezante, G.P. CT Myocardial Perfusion Imaging: A New Frontier in Cardiac Imaging. BioMed Res. Int. 2018, 2018, 7295460. [Google Scholar] [CrossRef]
- Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R.; Dewey, M.; Schönenberger, E. Patient Satisfaction with Coronary CT Angiography, Myocardial CT Perfusion, Myocardial Perfusion MRI, SPECT Myocardial Perfusion Imaging and Conventional Coronary Angiography. Eur. Radiol. 2015, 25, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Fogante, M.; Paolini, E.; Cela, F.; Esposto Pirani, P.; Balardi, L.; Perna, G.P.; Schicchi, N. Feasibility, Added Value, and Radiation Dose of Combined Coronary CT Angiography and Stress Dynamic CT Myocardial Perfusion Imaging in Moderate Coronary Artery Disease: A Real-World Study. J. Cardiovasc. Dev. Dis. 2025, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Minhas, A.; Dewey, M.; Vavere, A.L.; Tanami, Y.; Ostovaneh, M.R.; Laule, M.; Rochitte, C.E.; Niinuma, H.; Kofoed, K.F.; Geleijns, J.; et al. Patient Preferences for Coronary CT Angiography with Stress Perfusion, SPECT, or Invasive Coronary Angiography. Radiology 2019, 291, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.P.; Cerci, R.J.; Valdiviezo, C.; Ostovaneh, M.R.; Vavere, A.L.; de Vasconcellos, H.D.; Matheson, M.B.; Cox, C.; Miller, J.M.; di Carli, M.; et al. Combined Computed Tomography Angiography-Computed Tomography Perfusion in the Identification and Prognostic Assessment of Myocardial Bridging from the CORE320 Study: 5-Year Follow-Up. Am. J. Cardiol. 2023, 207, 314–321. [Google Scholar] [CrossRef]
- Zhao, X.-B.; Fu, Y.; Dong, X.-B.; Qi, Z. Impact of Myocardial Bridge-Mural Coronary Artery on Myocardial Blood Supply. Acta Acad. Med. Sin. 2016, 38, 654–659. [Google Scholar] [CrossRef]
- Gould, K.L.; Johnson, N.P. Myocardial Bridges: Lessons in Clinical Coronary Pathophysiology. JACC Cardiovasc. Imaging 2015, 8, 705–709. [Google Scholar] [CrossRef]
- Teragawa, H.; Oshita, C.; Ueda, T. The Myocardial Bridge: Potential Influences on the Coronary Artery Vasculature. Clin. Med. Insights Cardiol. 2019, 13, 1179546819846493. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, L.; Dai, X.; Zhang, J. CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard. Korean J. Radiol. 2021, 22, 1964–1973. [Google Scholar] [CrossRef]
- Kumar, A.; Hung, O.Y.; Piccinelli, M.; Eshtehardi, P.; Corban, M.T.; Sternheim, D.; Yang, B.; Lefieux, A.; Molony, D.S.; Thompson, E.W.; et al. Low Coronary Wall Shear Stress Is Associated With Severe Endothelial Dysfunction in Patients With Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2018, 11, 2072–2080. [Google Scholar] [CrossRef]
- Corban, M.T.; Hung, O.Y.; Eshtehardi, P.; Rasoul-Arzrumly, E.; McDaniel, M.; Mekonnen, G.; Timmins, L.H.; Lutz, J.; Guyton, R.A.; Samady, H. Myocardial Bridging: Contemporary Understanding of Pathophysiology with Implications for Diagnostic and Therapeutic Strategies. J. Am. Coll. Cardiol. 2014, 63, 2346–2355. [Google Scholar] [CrossRef]
- Gawor, R.; Kuśmierek, J.; Płachcińska, A.; Bieńkiewicz, M.; Drożdż, J.; Piotrowski, G.; Chiżyński, K. Myocardial Perfusion GSPECT Imaging in Patients with Myocardial Bridging. J. Nucl. Cardiol. 2011, 18, 1059–1065. [Google Scholar] [CrossRef]
Variable | Total (n = 81) | Hypoperfusion (n = 26) | No Hypoperfusion (n = 55) | p-Value |
---|---|---|---|---|
Age, years (mean ± SD) | 59.3 ± 11.7 | 61.8 ± 10.5 | 57.5 ± 12.1 | 0.1239 |
Male sex (n, %) | 54 (66.7%) | 17 (65.4%) | 37 (67.3%) | 0.9410 |
BMI, kg/m2 (mean ± SD) | 23.1 ± 2.3 | 23.6 ± 2.1 | 22.8 ± 2.4 | 0.5867 |
Diabetes mellitus (n, %) | 11 (13.6%) | 4 (15.4%) | 7 (12.7%) | 0.8148 |
Hypertension (n, %) | 43 (53.1%) | 13 (50.0%) | 30 (54.5%) | 0.8381 |
Dyslipidemia (n, %) | 30 (37.0%) | 11 (42.3%) | 19 (34.5%) | 0.6391 |
Current smoking (n, %) | 16 (19.8%) | 6 (23.1%) | 10 (18.2%) | 0.7753 |
Angina symptoms, n (%) | 56 (69.1%) | 17 (65.4%) | 39 (70.9%) | 0.9241 |
Rest ECG ischemic abnormalities (n, %) | 15 (18.5%) | 6 (23.1%) | 9 (16.4%) | 0.6759 |
Exercise ECG ischemic abnormalities (n, %) | 23 (28.4%) | 12 (46.2%) | 14 (25.5%) | 0.2071 |
Variable | Total (n = 81) | Hypoperfusion (n = 26) | No Hypoperfusion (n = 55) | p-Value |
---|---|---|---|---|
Calcium score, Agatston (median, IQR) | 122 [180] | 158 [180] | 92 [160] | 0.0911 |
CAD-RADS 0 (n, %) | 20 (24.7%) | 6 (23.1%) | 14 (25.5%) | 0.9713 |
CAD-RADS 1 (n, %) | 34 (42.0%) | 13 (50.0%) | 21 (47.3%) | 0.7186 |
CAD-RADS 2 (n, %) | 23 (28.4%) | 7 (26.9%) | 15 (27.3%) | 0.8221 |
EAT volume (cm3) (median, IQR) | 92.9 [35.1] | 93.5 [37.4] | 91.4 [34.6] | 0.2731 |
Bridge length, mm (median, IQR) | 32.1 [7.9] | 33.9 [10.8] | 29.9 [7.4] | 0.1824 |
Bridge depth, mm (median, IQR) | 3.0 [0.9] | 3.5 [0.8] | 2.9 [0.9] | <0.001 |
<50% stenosis in bridged vessel (n, %) | 23 (28.4%) | 11 (42.3%) | 12 (21.8%) | 0.0992 |
Bridge location mid-LAD (n, %) | 42 (51.9%) | 19 (73.1%) | 21 (38.2%) | 0.0181 |
Bridge location distal-LAD (n, %) | 39 (48.1%) | 7 (26.9%) | 32 (58.2%) | 0.0511 |
Variable | Coefficient | Standard Deviation | p-Value |
---|---|---|---|
Bridge length | 0.01 | 0.09 | 0.0953 |
Bridge depth | 0.41 | 0.08 | <0.001 |
<50% stenosis in bridged vessel | 0.11 | 0.01 | 0.2512 |
Bridge location mid-LAD | 0.23 | 0.09 | 0.0231 |
Bridge location distal-LAD | −0.13 | 0.09 | 0.1691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogante, M.; Pirani, P.E.; Cela, F.; Paolini, E.; Balardi, L.; Schicchi, N. Combined CCTA and Stress CTP for Anatomical and Functional Assessment of Myocardial Bridges. J. Imaging 2025, 11, 324. https://doi.org/10.3390/jimaging11090324
Fogante M, Pirani PE, Cela F, Paolini E, Balardi L, Schicchi N. Combined CCTA and Stress CTP for Anatomical and Functional Assessment of Myocardial Bridges. Journal of Imaging. 2025; 11(9):324. https://doi.org/10.3390/jimaging11090324
Chicago/Turabian StyleFogante, Marco, Paolo Esposto Pirani, Fatjon Cela, Enrico Paolini, Liliana Balardi, and Nicolò Schicchi. 2025. "Combined CCTA and Stress CTP for Anatomical and Functional Assessment of Myocardial Bridges" Journal of Imaging 11, no. 9: 324. https://doi.org/10.3390/jimaging11090324
APA StyleFogante, M., Pirani, P. E., Cela, F., Paolini, E., Balardi, L., & Schicchi, N. (2025). Combined CCTA and Stress CTP for Anatomical and Functional Assessment of Myocardial Bridges. Journal of Imaging, 11(9), 324. https://doi.org/10.3390/jimaging11090324