Automated Task-Transfer Function Measurement for CT Image Quality Assessment Based on AAPM TG 233
Abstract
1. Introduction
2. Materials and Methods
2.1. Phantoms and Image Acquisition
2.2. Automated TTF Measurement
2.3. Comparison with ImQuest and iQmetrix-CT
2.4. Statistical Analysis
3. Results
3.1. TTF on Computational Phantom Images
3.2. TTF on ACR 464 CT Phantom Images
3.3. TTF on the AAPM CT Phantom Image
3.4. TTF on Catphan® 604 Phantom Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAPM | American Association of Physicists in Medicine |
ASiR | Adaptive Statistical Iterative Reconstruction |
CNR | Contrast-to-Noise Ratio |
CT | Computed Tomography |
DLIR | Deep Learning Image Reconstruction |
ESF | Edge Spread Function |
FBP | Filtered-Back Projection |
FFT | Fast Fourier Transform |
HU | Hounsfield Unit |
IR | Iterative Reconstruction |
LSF | Line Spread Function |
LSI | Linear Shift Invariant |
MTF | Modulation Transfer Function |
ROI | Region-of-Interest |
TTF | Task-Transfer Function |
References
- Booij, R.; Budde, R.P.J.; Dijkshoorn, M.L.; van Straten, M. Technological developments of X-ray computed tomography over half a century: User’s influence on protocol optimization. Eur. J. Radiol. 2020, 131, 109261. [Google Scholar] [CrossRef]
- De Basea, M.B.; Thierry-Chef, I.; Harborn, R.; Hauptmann, M.; Byrnes, G.; Bernier, M.-O.; Le Cornet, L.; Dabin, J.; Ferro, G.; Istad, T.S.; et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat. Med. 2023, 29, 3111–3119. [Google Scholar] [CrossRef]
- Godt, J.C.; Johansen, C.K.; Martinsen, A.C.T.; Schulz, A.; Brøgger, H.M.; Jensen, K.; Stray-Pedersen, A.; Dormagen, J.B. Iterative reconstruction improves image quality and reduces radiation dose in trauma protocols; A human cadaver study. Acta Radiol. Open 2021, 10, 20584601211055389. [Google Scholar] [CrossRef] [PubMed]
- Alsleem, H.; Tajaldeen, A.; Almutairi, A.; Almohiy, H.; Aldaais, E.; Albattat, R.; Alsleem, M.; Abuelhia, E.; Kheiralla, O.A.M.; Alqahtani, A.; et al. The actual role of iterative reconstruction algorithm methods in several Saudi hospitals as a tool for radiation dose minimization of CT scan examinations. J. Multidiscip. Healthc. 2022, 15, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Takenaga, T.; Katsuragawa, S.; Goto, M.; Hatemura, M.; Uchiyama, Y.; Shiraishi, J. Modulation transfer function measurement of CT images by use of a circular edge method with a logistic curve-fitting technique. Radiol. Phys. Technol. 2015, 8, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.N.; Fung, G.S.; Siewerdsen, J.H.; Tsui, B.M. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med. Phys. 2013, 40, 051907. [Google Scholar] [CrossRef]
- Svenson, J.; Irvine, M.A. Measurement of computed tomography modulation transfer function with a novel polymethyl methacrylate phantom. Phys. Eng. Sci. Med. 2024, 47, 1773–1780. [Google Scholar] [CrossRef]
- Lebedev, S.; Sawall, S.; Knaup, M.; Kachelrieß, M. Optimization of the alpha image reconstruction—An iterative CT-image reconstruction with well-defined image quality metrics. Z. Med. Phys. 2017, 27, 180–192. [Google Scholar] [CrossRef]
- Tseng, H.; Fan, J.; Kupinski, M.A. Assessing computed tomography image quality for combined detection and estimation tasks. J. Med. Imaging 2017, 4, 045503. [Google Scholar]
- Yu, L.; Vrieze, T.J.; Leng, S.; Fletcher, J.G.; McCollough, C.H. Technical Note: Measuring contrast- and noise-dependent spatial resolution of an iterative reconstruction method in CT using ensemble averaging. Med. Phys. 2015, 42, 2261–2267. [Google Scholar] [CrossRef]
- Robins, M.; Solomon, J.; Richards, T.; Samei, E. 3D task-transfer function representation of the signal transfer properties of low-contrast lesions in FBP- and iterative-reconstructed CT. Med. Phys. 2018, 45, 4977–4985. [Google Scholar] [CrossRef]
- Jaruvongvanich, V.; Muangsomboon, K.; Teerasamit, W.; Suvannarerg, V.; Komoltri, C.; Thammakittiphan, S.; Lornimitdee, W.; Ritsamrej, W.; Chaisue, P.; Pongnapang, N.; et al. Optimizing computed tomography image reconstruction for focal hepatic lesions: Deep learning image reconstruction vs iterative reconstruction. Heliyon 2024, 10, e34847. [Google Scholar] [CrossRef] [PubMed]
- Anam, C.; Amilia, R.; Naufal, A.; Fujibuchi, T.; Dougherty, G. A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images. Biomed. Phys. Eng. Express 2024, 11, 017001. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.B.; Abadi, E.; Solomon, J.; Samei, E. Development, validation, and relevance of in vivo low-contrast task transfer function to estimate detectability in clinical CT images. Med. Phys. 2021, 48, 7698–7711. [Google Scholar] [CrossRef] [PubMed]
- Sugisawa, K.; Ichikawa, K.; Urikura, A. Spatial resolution compensation by adjusting the reconstruction kernels for iterative reconstruction images of computed tomography. Phys. Med. 2020, 74, 47–55. [Google Scholar] [CrossRef]
- Solomon, J.; Wilson, J.; Samei, E. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability. Med. Phys. 2015, 42, 4941–4953. [Google Scholar] [CrossRef]
- Samei, E.; Bakalyar, D.; Boedeker, K.L.; Brady, S.; Fan, J.; Leng, S.; Myers, K.J.; Popescu, L.M.; Giraldo, J.C.R.; Ranallo, F.; et al. Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233. Med. Phys. 2019, 46, e735–e756. [Google Scholar] [CrossRef]
- Guido, G.; Polici, M.; Nacci, I.; Bozzi, F.; De Santis, D.; Ubaldi, N.; Polidori, T.; Zerunian, M.; Bracci, B.; Laghi, A.; et al. Iterative reconstruction: State-of-the-art and future perspectives. J. Comput. Assist. Tomogr. 2023, 47, 244–254. [Google Scholar] [CrossRef]
- Urikura, A.; Ichikawa, K.; Hara, T.; Nishimaru, E.; Nakaya, Y. Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography. Radiol. Phys. Technol. 2014, 7, 358–366. [Google Scholar] [CrossRef]
- Ohashi, K.; Ichikawa, K.; Kitera, N.; Watanabe, S.; Kawashima, H.; Kawai, T.; Hiwatashi, A. Task transfer function measurement of monoenergetic CT in energy-integrated detector CT and photon-counting detector CT, based on tasks using iodinated rod and wire phantoms. Phys. Med. 2025, 130, 104920. [Google Scholar] [CrossRef]
- Fujita, N.; Yasaka, K.; Hatano, S.; Sakamoto, N.; Kurokawa, R.; Abe, O. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: Comparison with hybrid iterative reconstruction. Neuroradiology 2024, 66, 1105–1112. [Google Scholar] [CrossRef]
- Dabli, D.; Loisy, M.; Frandon, J.; de Oliveira, F.; Meerun, A.M.; Guiu, B.; Beregi, J.-P.; Greffier, J. Comparison of image quality of two versions of deep-learning image reconstruction algorithm on a rapid kV-switching CT: A phantom study. Eur. Radiol. Exp. 2023, 7, 1. [Google Scholar] [CrossRef]
- Anam, C.; Amilia, R.; Naufal, A.; Sutanto, H.; Dwihapsari, Y.; Fujibuchi, T.; Dougherty, G. Impact of noise level on the accuracy of automated measurement of CT number linearity on ACR CT and computational phantoms. J. Biomed. Phys. Eng. 2023, 13, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Barbotteau, Y.; Gardavaud, F. iQMetrix-CT: New software for task-based image quality assessment of phantom CT images. Diagn. Interv. Imaging 2022, 103, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Anam, C.; Naufal, A.; Lubis, L.E.; Fujibuchi, T. Statistical phase alignment of edge spread function for modulation transfer function measurement on computed tomography images. Phys. Med. 2025, 129, 104876. [Google Scholar] [CrossRef] [PubMed]
- Voglis, C.; Lagaris, I.E. A Rectangular Trust Region Dogleg Approach for Unconstrained and Bound Constrained Nonlinear Optimization; WSEAS International Conference on Applied Mathematics: Corfu, Greece, 2004. [Google Scholar]
- Anam, C.; Naufal, A.; Fujibuchi, T.; Matsubara, K.; Dougherty, G. Automated development of the contrast-detail curve based on statistical low-contrast detectability in CT images. J. Appl. Clin. Med. Phys. 2022, 23, e13719. [Google Scholar] [CrossRef]
- Greffier, J.; Si-Mohamed, S.; Frandon, J.; Loisy, M.; de Oliveira, F.; Beregi, J.P.; Dabli, D. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Med. Phys. 2022, 49, 5052–5063. [Google Scholar] [CrossRef]
Parameter | FBP | ASIR 50 |
---|---|---|
Scanner | Philips MX-16 slice | GE Revolution EVO |
Tube current | 300 | 160 |
Tube voltage | 120 | 120 |
Slice thickness | 5 | 5 |
Filter | SB | Head |
Kernel | SB | Standard |
FOV | 222 | 235 |
Scan mode | Helical | Helical |
Pitch | 0.671 | 0.53 |
Material | Estimated CT Number (HU) * | Lower Threshold (HU) | Upper Threshold (HU) |
---|---|---|---|
Bone | 955 | 750 | 1300 |
Polyethylene | −95 | −120 | −70 |
Air | −1000 | None | −800 |
Acrylic | 120 | 100 | 150 |
Material | Lower Threshold (HU) | Upper Threshold (HU) |
---|---|---|
Acrylic | 80 | 165 |
Polycarbonate | 100 | 114 |
Polyethylene | −110 | −60 |
Polystyrene | −55 | −20 |
Nylon | 80 | 115 |
Material | CT Number Range (HU) | Lower Threshold (HU) | Upper Threshold (HU) |
---|---|---|---|
Air | −1046 to −986 | None | −900 |
Polymethyl pentene (PMP) | −220 to −172 | −250 | −160 |
Low-density polyethylene (LDPE) | −121 to −87 | −121 | −87 |
Polystyrene | −65 to −29 | −65 | −10 |
Acrylic | 92 to 137 | 80 | 150 |
Bone 20% | 211 to 263 | 200 | 280 |
Delrin | 344 to 37 | 300 | 430 |
Bone 50% | 667 to 783 | 600 | 800 |
Teflon | 941 to 1060 | 900 | None |
Spatial Resolution | Object | IndoQCT | ImQuest | ||||
---|---|---|---|---|---|---|---|
CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | ||
Low | Bone | 194.93 | 0.23 | 0.47 | 205.70 | 0.24 | 0.44 |
Polyethylene | 19.70 | 0.23 | 0.48 | 20.90 | 0.25 | 0.43 | |
Air | 209.26 | 0.23 | 0.47 | 209.69 | 0.24 | 0.44 | |
Acrylic | 24.59 | 0.23 | 0.47 | 25.90 | 0.25 | 0.43 | |
Moderate | Bone | 195.95 | 0.41 | 0.86 | 207.68 | 0.48 | 0.87 |
Polyethylene | 19.59 | 0.43 | 0.9 | 19.88 | 0.50 | 0.83 | |
Air | 208.56 | 0.42 | 0.86 | 219.74 | 0.48 | 0.87 | |
Acrylic | 24.70 | 0.42 | 0.87 | 26.05 | 0.48 | 0.86 | |
High | Bone | 198.54 | 0.50 | 1.03 | 205.39 | 0.60 | 1.19 |
Polyethylene | 19.92 | 0.51 | 1.04 | 20.10 | 0.59 | 1.55 | |
Air | 209.23 | 0.50 | 1.04 | 218.4 | 0.59 | 1.17 | |
Acrylic | 24.91 | 0.52 | 1.09 | 25.57 | 0.61 | 1.14 |
Reconstruction | Object | IndoQCT | ImQuest | iQmetrix-CT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | ||
FBP | Bone | 106.70 | 0.30 | 0.63 | 146.66 | 0.37 | 0.65 | 339.86 | 0.40 | 0.70 |
PE | 23.05 | 0.33 | 0.68 | 23.13 | 0.34 | 0.63 | 51.87 | 0.45 | 0.72 | |
Air | 233.68 | 0.31 | 0.65 | 233.64 | 0.37 | 0.66 | 438.19 | 0.37 | 0.68 | |
Acrylic | 29.31 | 0.32 | 0.66 | 30.13 | 0.37 | 0.63 | 63.83 | 0.40 | 0.71 | |
ASiR 50 | Bone | 147.37 | 0.42 | 0.87 | 155.89 | 0.38 | 0.67 | 160.49 | 0.34 | 0.67 |
PE | 38.56 | 0.36 | 0.73 | 22.82 | 0.38 | 0.70 | 33.58 | 0.34 | 0.67 | |
Air | 325.38 | 0.35 | 0.73 | 339.59 | 0.37 | 0.66 | 322.99 | 0.38 | 0.70 | |
Acrylic | 46.44 | 0.33 | 0.69 | 38.67 | 0.37 | 0.66 | 42.65 | 0.37 | 0.73 |
Slice Thickness | Object | IndoQCT | ImQuest | ||||
---|---|---|---|---|---|---|---|
CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | ||
2.5 mm | Acrylic | 9.21 | 0.38 | 0.73 | 9.55 | 0.45 | 0.73 |
Polycarbonate | 11.28 | 0.38 | 0.68 | 10.98 | 0.43 | 0.69 | |
Polyethylene | 9.87 | 0.29 | 0.63 | 10.78 | 0.38 | 0.66 | |
Polystyrene | 4.31 | 0.18 | 0.51 | 4.21 | 0.36 | 0.66 | |
Nylon | 5.45 | 0.33 | 0.66 | 5.64 | 0.49 | 0.76 | |
5.0 mm | Acrylic | 13.10 | 0.36 | 0.73 | 13.75 | 0.73 | 0.45 |
Polycarbonate | 15.72 | 0.33 | 0.68 | 15.36 | 0.40 | 0.69 | |
Polyethylene | 14.12 | 0.32 | 0.65 | 15.02 | 0.34 | 0.67 | |
Polystyrene | 5.98 | 0.26 | 0.54 | 6.07 | 0.28 | 0.69 | |
Nylon | 8.56 | 0.36 | 0.75 | 7.08 | 0.45 | 0.72 | |
7.5 mm | Acrylic | 13.90 | 0.37 | 0.76 | 14.15 | 0.45 | 0.74 |
Polycarbonate | 16.29 | 0.36 | 0.74 | 15.03 | 0.4 | 0.67 | |
Polyethylene | 15.21 | 0.32 | 0.67 | 13.91 | 0.39 | 0.68 | |
Polystyrene | 6.23 | 0.29 | 0.60 | 6.29 | 0.37 | 0.75 | |
Nylon | 8.72 | 0.36 | 0.75 | 5.56 | 0.41 | 0.67 |
DLIR | Object | IndoQCT | ImQuest | ||||
---|---|---|---|---|---|---|---|
CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | CNR | 50% TTF (mm−1) | 10% TTF (mm−1) | ||
Low | Air | 213.1 | 0.34 | 0.70 | 203.37 | 0.42 | 0.70 |
PMP | 41.44 | 0.33 | 0.69 | 45.38 | 0.41 | 0.70 | |
LDPE | 28.53 | 0.34 | 0.70 | 30.44 | 0.41 | 0.71 | |
Polystyrene | 19.22 | 0.32 | 0.66 | 17.70 | 0.33 | 0.63 | |
Acrylic | 11.89 | 0.31 | 0.64 | 12.19 | 0.38 | 0.68 | |
Bone 20% | 22.38 | 0.39 | 0.80 | 30.74 | 0.37 | 0.62 | |
Delrin | 45.13 | 0.37 | 0.78 | 53.98 | 0.42 | 0.77 | |
Bone 50% | 74.65 | 0.38 | 0.79 | 130.01 | 0.41 | 0.70 | |
Teflon | 116.7 | 0.36 | 0.74 | 161.12 | 0.43 | 0.70 | |
Medium | Air | 263.6 | 0.34 | 0.70 | 245.53 | 0.42 | 0.71 |
PMP | 48.43 | 0.34 | 0.69 | 58.19 | 0.39 | 0.68 | |
LDPE | 33.16 | 0.33 | 0.68 | 39.12 | 0.38 | 0.68 | |
Polystyrene | 22.63 | 0.31 | 0.65 | 20.94 | 0.35 | 0.67 | |
Acrylic | 14.62 | 0.32 | 0.67 | 13.69 | 0.42 | 0.73 | |
Bone 20% | 23.37 | 0.38 | 0.78 | 36.40 | 0.43 | 0.70 | |
Delrin | 53.31 | 0.38 | 0.78 | 66.14 | 0.43 | 0.75 | |
Bone 50% | 69.48 | 0.38 | 0.78 | 145.97 | 0.44 | 0.71 | |
Teflon | 141.4 | 0.36 | 0.74 | 190.09 | 0.43 | 0.70 | |
High | Air | 346.80 | 0.34 | 0.69 | 287.00 | 0.41 | 0.70 |
PMP | 62.73 | 0.33 | 0.69 | 71.49 | 0.40 | 0.68 | |
LDPE | 41.74 | 0.33 | 0.68 | 42.45 | 0.30 | 0.50 | |
Polystyrene | 28.59 | 0.31 | 0.65 | 30.55 | 0.29 | 0.51 | |
Acrylic | 17.79 | 0.32 | 0.67 | 21.20 | 0.43 | 0.50 | |
Bone 20% | 27.9 | 0.37 | 0.77 | 44.23 | 0.30 | 0.51 | |
Delrin | 69.42 | 0.38 | 0.78 | 74.90 | 0.40 | 0.74 | |
Bone 50% | 76.28 | 0.38 | 0.78 | 197.74 | 0.42 | 0.69 | |
Teflon | 155.1 | 0.36 | 0.74 | 236.41 | 0.43 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anam, C.; Amilia, R.; Naufal, A.; Hidayanto, E.; Sutanto, H.; Lubis, L.E.; Fujibuchi, T.; Dougherty, G. Automated Task-Transfer Function Measurement for CT Image Quality Assessment Based on AAPM TG 233. J. Imaging 2025, 11, 277. https://doi.org/10.3390/jimaging11080277
Anam C, Amilia R, Naufal A, Hidayanto E, Sutanto H, Lubis LE, Fujibuchi T, Dougherty G. Automated Task-Transfer Function Measurement for CT Image Quality Assessment Based on AAPM TG 233. Journal of Imaging. 2025; 11(8):277. https://doi.org/10.3390/jimaging11080277
Chicago/Turabian StyleAnam, Choirul, Riska Amilia, Ariij Naufal, Eko Hidayanto, Heri Sutanto, Lukmanda E. Lubis, Toshioh Fujibuchi, and Geoff Dougherty. 2025. "Automated Task-Transfer Function Measurement for CT Image Quality Assessment Based on AAPM TG 233" Journal of Imaging 11, no. 8: 277. https://doi.org/10.3390/jimaging11080277
APA StyleAnam, C., Amilia, R., Naufal, A., Hidayanto, E., Sutanto, H., Lubis, L. E., Fujibuchi, T., & Dougherty, G. (2025). Automated Task-Transfer Function Measurement for CT Image Quality Assessment Based on AAPM TG 233. Journal of Imaging, 11(8), 277. https://doi.org/10.3390/jimaging11080277