Editorial on the Special Issue: “Advances in Retinal Image Processing”
Conflicts of Interest
List of Contributions
- Likassa, H.T.; Chen, D.-G.; Chen, K.; Wang, Y.; Zhu, W. Robust PCA with Lw,∗ and L2,1 Norms: A Novel Method for Low-Quality Retinal Image Enhancement. J. Imaging 2024, 10, 151. https://doi.org/10.3390/jimaging10070151.
- Ávila, F.J.; Casado, P.; Marcellán, M.C.; Remón, L.; Ares, J.; Collados, M.V.; Otín, S. Subjective Straylight Index: A Visual Test for Retinal Contrast Assessment as a Function of Veiling Glare. J. Imaging 2024, 10, 89. https://doi.org/10.3390/jimaging10040089.
- Nunes, A.; Serranho, P.; Guimarães, P.; Ferreira, J.; Castelo-Branco, M.; Bernardes, R. When Sex Matters: Differences in the Central Nervous System as Imaged by OCT through the Retina. J. Imaging 2024, 10, 6. https://doi.org/10.3390/jimaging10010006.
- Badawi, S.A.; Takruri, M.; Al-Hattab, M.; Aldoboni, G.; Guessoum, D.; ElBadawi, I.; Aichouni, M.; Chaudhry, I.A.; Mahar, N.; Nileshwar, A.K. Arteriovenous Length Ratio: A Novel Method for Evaluating Retinal Vasculature Morphology and Its Diagnostic Potential in Eye-Related Diseases. J. Imaging 2023, 9, 253. https://doi.org/10.3390/jimaging9110253.
- Noor, M.; McGrath, O.; Drira, I.; Aslam, T. Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome. J. Imaging 2023, 9, 234. https://doi.org/10.3390/jimaging9110234.
- Bhandari, M.; Shahi, T.B.; Neupane, A. Evaluating Retinal Disease Diagnosis with an Interpretable Lightweight CNN Model Resistant to Adversarial Attacks. J. Imaging 2023, 9, 219. https://doi.org/10.3390/jimaging9100219.
- Li, Z.; Han, Y.; Yang, X. Multi-Fundus Diseases Classification Using Retinal Optical Coherence Tomography Images with Swin Transformer V2. J. Imaging 2023, 9, 203. https://doi.org/10.3390/jimaging9100203.
- Ganokratanaa, T.; Ketcham, M.; Pramkeaw, P. Advancements in Cataract Detection: The Systematic Development of LeNet-Convolutional Neural Network Models. J. Imaging 2023, 9, 197. https://doi.org/10.3390/jimaging9100197.
- Ahmed, H.; Zhang, Q.; Donnan, R.; Alomainy, A. Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review. J. Imaging 2024, 10, 86. https://doi.org/10.3390/jimaging10040086.
References
- Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS Rep. 9. Ophthalmology 1991, 98 (Suppl. S5), 766–785. [Google Scholar]
- Baudoin, C.E.; Lay, B.J.; Klein, J.C. Automatic detection of microaneurysms in diabetic fluorescein angiography. Rev. Epidemiol. Sante Publique 1984, 32, 254–261. [Google Scholar] [PubMed]
- Bahr, T.; Vu, T.A.; Tuttle, J.J.; Iezzi, R. Deep Learning and Machine Learning Algorithms for Retinal Image Analysis in Neurodegenerative Disease: Systematic Review of Datasets and Models. Transl. Vis. Sci. Technol. 2024, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.D.; Biousse, V.; Newman, N.J. Artificial intelligence in ophthalmology: An insight into neurodegenerative disease. Curr. Opin. Ophthalmol. 2022, 33, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.; Shahi, T.B.; Neupane, A. Evaluating Retinal Disease Diagnosis with an Interpretable Lightweight CNN Model Resistant to Adversarial Attacks. J. Imaging 2023, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, Y.; Yang, X. Multi-Fundus Diseases Classification Using Retinal Optical Coherence Tomography Images with Swin Transformer V2. J. Imaging 2023, 9, 203. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jidesh, P.; Lakshminarayanan, V. Editorial on the Special Issue: “Advances in Retinal Image Processing”. J. Imaging 2025, 11, 366. https://doi.org/10.3390/jimaging11100366
Jidesh P, Lakshminarayanan V. Editorial on the Special Issue: “Advances in Retinal Image Processing”. Journal of Imaging. 2025; 11(10):366. https://doi.org/10.3390/jimaging11100366
Chicago/Turabian StyleJidesh, P., and Vasudevan Lakshminarayanan. 2025. "Editorial on the Special Issue: “Advances in Retinal Image Processing”" Journal of Imaging 11, no. 10: 366. https://doi.org/10.3390/jimaging11100366
APA StyleJidesh, P., & Lakshminarayanan, V. (2025). Editorial on the Special Issue: “Advances in Retinal Image Processing”. Journal of Imaging, 11(10), 366. https://doi.org/10.3390/jimaging11100366