Disclosure of a Concealed Michelangelo-Inspired Depiction in a 16th-Century Painting
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Painting
2.2. Laser Scanning Microprofilometry (MP)
2.3. Macro X-ray Fluorescence (MA-XRF) Mapping
2.4. Reflectance Imaging Spectroscopy (RIS)
2.4.1. Principal Component Analysis (PCA) and Spectral Correlation Mapping (SCM)
2.4.2. Reference Paint Mock-Ups
2.5. Spectral-Domain Optical Coherence Tomography (Sd-OCT)
3. Results
3.1. Surface Micromorphology
3.2. Underdrawings
3.3. Underpainting
3.4. Virtual Reconstruction
3.5. Is Leda’s Face Painted?
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfeld, M.; Van der Snickt, G.; Vanmeert, F.; Janssens, K.; Dik, J.; Appel, K.; van der Loeff, L.; Chavannes, M.; Meedendorp, T.; Hendriks, E. Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kröller–Müller Museum. Appl. Phys. A 2013, 111, 165–175. [Google Scholar] [CrossRef]
- Alfeld, M.; Siddons, D.P.; Janssens, K.; Dik, J.; Woll, A.; Kirkham, R.; van de Wetering, E. Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF. Appl. Phys. A 2013, 111, 157–164. [Google Scholar] [CrossRef]
- Dik, J.; Janssens, K.; Van Der Snickt, G.; Van Der Loeff, L.; Rickers, K.; Cotte, M. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 2008, 80, 6436–6442. [Google Scholar] [CrossRef] [PubMed]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Kleynhans, T.; Messinger, D.W.; Delaney, J.K. Towards automatic classification of diffuse reflectance image cubes from paintings collected with hyperspectral cameras. Microchem. J. 2020, 157, 104934. [Google Scholar] [CrossRef]
- Alfeld, M. MA-XRF for historical paintings: State of the art and perspective. Microsc. Microanal. 2020, 26, 72–75. [Google Scholar] [CrossRef]
- Galli, A.; Caccia, M.; Caglio, S.; Bonizzoni, L.; Castiglioni, I.; Gironda, M.; Alberti, R.; Martini, M. An innovative protocol for the study of painting materials involving the combined use of MA-XRF maps and hyperspectral images. Eur. Phys. J. Plus 2022, 137, 22. [Google Scholar] [CrossRef]
- Striova, J.; Dal Fovo, A.; Fontana, R. Reflectance imaging spectroscopy in heritage science. La Riv. del Nuovo C. 2020, 43, 515–566. [Google Scholar] [CrossRef]
- Conover, D.M.; Delaney, J.K.; Loew, M.H. Automatic registration and mosaicking of technical images of Old Master paintings. Appl. Phys. A 2015, 119, 1567–1575. [Google Scholar] [CrossRef]
- Van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J. Exploring a Hidden Painting Below the Surface of René Magritte’s Le Portrait. Appl. Spectrosc. 2016, 70, 57–67. [Google Scholar] [CrossRef]
- Thurrowgood, D.; Paterson, D.; de Jonge, M.; Kirkham, R.; Thurrowgood, S.; Howard, D.L. A Hidden Portrait By Edgar Degas. Sci. Rep. 2016, 6, 29594. [Google Scholar] [CrossRef]
- Favero, P.A.; Mass, J.; Delaney, J.K.; Woll, A.R.; Hull, A.M.; Dooley, K.A.; Finnefrock, A.C. Reflectance imaging spectroscopy and synchrotron radiation X-ray fluorescence mapping used in a technical study of The Blue Room by Pablo Picasso. Herit. Sci. 2017, 5, 13. [Google Scholar] [CrossRef]
- Herens, E.; Defeyt, C.; Walter, P.; Strivay, D. Discovery of a woman portrait behind La Violoniste by Kees van Dongen through hyperspectral imaging. Herit. Sci. 2017, 5, 14. [Google Scholar] [CrossRef]
- Smieska, L.M.; Twilley, J.; Woll, A.R.; Schafer, M.; DeGalan, A.M. Energy-optimized synchrotron XRF mapping of an obscured painting beneath Exit from the Theater, attributed to Honoré Daumier. Microchem. J. 2019, 146, 679–691. [Google Scholar] [CrossRef]
- Pu, W.; Huang, J.; Sober, B.; Daly, N.; Higgitt, C.; Dragotti, P.L.; Daubechies, I.; Rodrigues, M.R. A learning based approach to separate mixed X-ray images associated with artwork with concealed designs. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 1491–1495. [Google Scholar]
- Pu, W.; Huang, J.J.; Sober, B.; Daly, N.; Higgitt, C.; Daubechies, I.; Dragotti, P.L.; Rodrigues, M.R. Mixed x-ray image separation for artworks with concealed designs. IEEE Trans. Image Process. 2022, 31, 4458–4473. [Google Scholar] [CrossRef]
- Morello, M. Il Restauro del Dipinto su Tavola “Sacra Famiglia con San Giovannino e Santa Elisabetta” Attribuito a Domenico Beceri: Una Complessa Storia d’Esecuzione e di Conservazione. Trattamento dei Residui Cerosi e Ricerca sulla Compatibilità dei Materiali per l’Integrazione Materica. Master’s Thesis, Scuola di Alta Formazione e Studio (SAFS) Opificio delle Pietre Dure, Firenze, Italy, 2022. [Google Scholar]
- Vasari, G. Le Vite de’ Più Eccellenti Pittori e Scultori e Architetti (1549–63), 2nd ed.; Newton Compton Editori: Roma, Italy, 1993. [Google Scholar]
- Dal Fovo, A.; Morello, M.; Mazzinghi, A.; Toso, C.; Galeotti, M.; Fontana, R. Spectral Mapping Techniques for the Stratigraphic and Compositional Characterisation of a 16th-Century Painting. Heritage 2024, 7, 1320–1333. [Google Scholar] [CrossRef]
- Daffara, C.; Mazzocato, S. Surface Metrology Based on Scanning Conoscopic Holography for In Situ and In-Process Monitoring of Microtexture in Paintings. Sensors 2022, 22, 6637. [Google Scholar] [CrossRef]
- Targowski, P.; Gòra, M.; Wojtkowski, M. Optical coherence tomography for artwork diagnostics. Laser Chem. 2006, 2006, 35373. [Google Scholar] [CrossRef]
- Ali UM, E.; Hossain, M.A.; Islam, M.R. Analysis of PCA based feature extraction methods for classification of hyperspectral image. In Proceedings of the 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 23–24 December 2019; pp. 1–6. [Google Scholar]
- Mandal, D.J.; Pedersen, M.; George, S.; Deborah, H.; Boust, C. An experiment-based comparative analysis of pigment classification algorithms using hyperspectral imaging. J. Imaging Sci. Technol. 2023, 67, 30403–30418. [Google Scholar] [CrossRef]
- Daffara, C.; Mazzocato, S.; Marchioro, G. Multiscale roughness analysis by microprofilometry based on conoscopic holography: A new tool for treatment monitoring in highly reflective metal artworks. Eur. Phys. J. Plus 2022, 137, 430. [Google Scholar] [CrossRef]
- Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M. Application of noninvasive optical monitoring methodologies to follow and record painting cleaning processe. Appl. Phys. A 2015, 121, 957–966. [Google Scholar] [CrossRef]
- CHNet—Cultural Heritage Network. Available online: https://chnet.infn.it (accessed on 10 August 2022).
- Taccetti, F.; Castelli, L.; Czelusniak, C.; Gelli, N.; Mazzinghi, A.; Palla, L.; Ruberto, C.; Censori, C.; Giudice, A.L.; Re, A.; et al. A multipurpose X-ray fluorescence scanner developed for in situ analysis. Rend. Lincei. Sci. Fis. E Nat. 2019, 30, 307–322. [Google Scholar] [CrossRef]
- Striova, J.; Ruberto, C.; Barucci, M.; Blažek, J.; Kunzelman, D.; Fovo, A.D.; Pampaloni, E.; Fontana, R. Spectral imaging and archival data in analysing Madonna of the Rabbit paintings by Manet and Titian. Angew. Chem. 2018, 130, 7530–7534. [Google Scholar] [CrossRef]
- Burger, J.; Gowen, A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 108, 13–22. [Google Scholar] [CrossRef]
- Prati, S.; Sciutto, G.; Bonacini, I.; Mazzeo, R. New frontiers in application of FTIR microscopy for characterization of cultural heritage materials. In Analytical Chemistry for Cultural Heritage; Mazzeo, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 129–160. [Google Scholar]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Yield estimation from hyperspectral imagery using spectral angle mapper (SAM). Trans. ASABE 2008, 51, 729–737. [Google Scholar] [CrossRef]
- De Carvalho, O.A.; Meneses, P.R. Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). In Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication 00-18; JPL Publication: Pasadena, CA, USA, 2000; Volume 9, p. 2. [Google Scholar]
- Striova, J.; Dal Fovo, A.; Fontani, V.; Barucci, M.; Pampaloni, E.; Raffaelli, M.; Fontana, R. Modern acrylic paints probed by optical coherence tomography and infrared reflectography. Microchem. J. 2018, 138, 65–71. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Papanikolaou, A.; Zacharakis, G.; Fontana, R. Combined photoacoustic imaging to delineate the internal structure of paintings. Opt. Lett. 2019, 44, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Ciatti, M.; Kunzelmann, D. Il Nano Morgante di Agnolo Bronzino: Un dipinto «a due dritti» restaurato. In Problemi di Conservazione e Restauro; Edifir: Florence, Italy, 2012; p. 96. [Google Scholar]
- Wallace, W.E. Michelangelo’s “Leda”: The diplomatic context. Renaiss. Stud. 2001, 15, 473–499. Available online: http://www.jstor.org/stable/24413092 (accessed on 20 July 2024). [CrossRef]
- Karpinski, C. Rosso Fiorentino Review of Rosso Fiorentino: Drawings, Prints, and Decorative Arts. Print Q. 1988, 5, 171–173. Available online: http://www.jstor.org/stable/41823818 (accessed on 20 July 2024).
- Wickham, A. Thomas Lawrence and the Royal Academy’s cartoon of’Leda and the swan’after Michelangelo. Burlingt. Mag. 2010, 152, 297–302. [Google Scholar]
- Alberti, A.; Rovetta, A.; Salsi, C. D’Après Michelangelo; Marsilio Editori: Milano, Italy, 2015; pp. 106–113. [Google Scholar]
- Franklin, D. A Portrait by Rosso Fiorentino in the National Gallery. Burlingt. Mag. 1989, 131, 839–842. Available online: http://www.jstor.org/stable/884213 (accessed on 20 July 2024).
- Condivi, A. Vita di Michelagnolo Buonarroti. Spina Barelli Ed.: Milano, Italy, 1964. [Google Scholar]
- Pilliod, E.; La France, R.G. Review of Bachiacca: Artist of the Medici Court. Renaiss. Q. 2010, 63, 248–249. [Google Scholar] [CrossRef]
- Karella, T.; Blažek, J.; Striová, J. Convolutional neural network exploiting pixel surroundings to reveal hidden features in artwork NIR reflectograms. J. Cult. Herit. 2022, 58, 186–198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Fovo, A.; Morello, M.; Mazzinghi, A.; Toso, C.; Pampaloni, E.; Fontana, R. Disclosure of a Concealed Michelangelo-Inspired Depiction in a 16th-Century Painting. J. Imaging 2024, 10, 175. https://doi.org/10.3390/jimaging10080175
Dal Fovo A, Morello M, Mazzinghi A, Toso C, Pampaloni E, Fontana R. Disclosure of a Concealed Michelangelo-Inspired Depiction in a 16th-Century Painting. Journal of Imaging. 2024; 10(8):175. https://doi.org/10.3390/jimaging10080175
Chicago/Turabian StyleDal Fovo, Alice, Margherita Morello, Anna Mazzinghi, Caterina Toso, Enrico Pampaloni, and Raffaella Fontana. 2024. "Disclosure of a Concealed Michelangelo-Inspired Depiction in a 16th-Century Painting" Journal of Imaging 10, no. 8: 175. https://doi.org/10.3390/jimaging10080175
APA StyleDal Fovo, A., Morello, M., Mazzinghi, A., Toso, C., Pampaloni, E., & Fontana, R. (2024). Disclosure of a Concealed Michelangelo-Inspired Depiction in a 16th-Century Painting. Journal of Imaging, 10(8), 175. https://doi.org/10.3390/jimaging10080175