High-Resolution Iodine-Enhanced Micro-Computed Tomography of Intact Human Hearts for Detailed Coronary Microvasculature Analyses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Imaging Outcomes and Generated Models
3.2. Individual Line Profiles
3.3. Vessel Segmentations
3.4. Specimen Assessments Post-Processing
4. Discussion
- (a)
- Enhancing our understanding of collateral coronary anatomy and potential recruitment in diseased or fully occluded coronary arteries. With the generated high-resolution 3D vasculature models, one can then employ computational fluid dynamics (CFD) analyses to simulate local hemodynamics and endothelial shear stresses [4,23,24].
- (b)
- Developing novel devices, based on three-dimensional tissue density patterns within occluded segments, to increase future successes of interventional procedures to treat chronic total occlusions [25].
- (c)
- (d)
- Enabling novel explorations of the presence or absence of continuous intralesional microchannels that may present in a heart with true chronic total occlusions, including their complex and highly variable three-dimensional paths. Previous work on these anatomies has been limited to cross-sectional pathology/HE slices or rabbit animal models of the femoral artery [5].
- (e)
Potential Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camici, P.G.; d’Amati, G.; Rimoldi, O. Coronary microvascular dysfunction: Mechanisms and functional assessment. Nat. Rev. Cardiol. 2015, 12, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Gössl, M.; Versari, D.; Lerman, L.O.; Chade, A.R.; Beighley, P.E.; Erbel, R.; Ritman, E.L. Low vasa vasorum densities correlate with inflammation and subintimal thickening: Potential role in location—Determination of atherogenesis. Atherosclerosis 2009, 206, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Boerhout, C.K.M.; de Waard, G.A.; Lee, J.M.; Mejía-Rentería, H.; Lee, S.H.; Jung, J.-H.; Hoshino, M.; Echavarria-Pinto, M.; Meuwissen, M.; Matsuo, H.; et al. Prognostic value of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry. EuroIntervention 2022, 18, 719–728. [Google Scholar] [CrossRef] [PubMed]
- McEntegart, M.B.; Badar, A.A.; Ahmad, F.A.; Shaukat, A.; MacPherson, M.; Irving, J.; Strange, J.; Bagnall, A.J.; Hanratty, C.G.; Walsh, S.J. The collateral circulation of coronary chronic total occlusions. EuroIntervention 2016, 11, e1596–e1603. [Google Scholar] [CrossRef] [PubMed]
- Munce, N.R.; Strauss, B.H.; Qi, X.; Weisbrod, M.J.; Anderson, K.J.; Leung, G.; Sparkes, J.D.; Lockwood, J.; Jaffe, R.; Butany, J.; et al. Intravascular and Extravascular Microvessel Formation in Chronic Total Occlusions. JACC Cardiovasc. Imaging 2010, 3, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Mantella, L.E.; Liblik, K.; Johri, A.M. Vascular imaging of atherosclerosis: Strengths and weaknesses. Atherosclerosis 2021, 319, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Gössl, M.; Rosol, M.; Malyar, N.M.; Fitzpatrick, L.A.; Beighley, P.E.; Zamir, M.; Ritman, E.L. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat. Record. Part A Discov. Mol. Cell. Evol. Biol. 2003, 272, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Self, T.S.; Ginn-Hedman, A.-M.; Newell-Fugate, A.E.; Weeks, B.R.; Heaps, C.L. Iodine-based contrast staining improves micro-computed tomography of atherosclerotic coronary arteries. MethodsX 2021, 8, 101297. [Google Scholar] [CrossRef] [PubMed]
- Self, T.S.; Ginn-Hedman, A.M.; Kaulfus, C.N.; Newell-Fugate, A.E.; Weeks, B.R.; Heaps, C.L. Iodine-enhanced micro-computed tomography of atherosclerotic plaque morphology complements conventional histology. Atherosclerosis 2020, 313, 43–49. [Google Scholar] [CrossRef]
- Barger, A.C.; Beeuwkes, R.; Lainey, L.L.; Silverman, K.J. Hypothesis: Vasa Vasorum and Neovascularization of Human Coronary Arteries. N. Engl. J. Med. 1984, 310, 175–177. [Google Scholar] [CrossRef]
- Salg, G.A.; Steinle, V.; Labode, J.; Wagner, W.; Studier-Fischer, A.; Reiser, J.; Farjallah, E.; Guettlein, M.; Albers, J.; Hilgenfeld, T.; et al. Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas. Sci. Rep. 2024, 14, 10136. [Google Scholar] [CrossRef] [PubMed]
- Keklikoglou, K.; Arvanitidis, C.; Chatzigeorgiou, G.; Chatzinikolaou, E.; Karagiannidis, E.; Koletsa, T.; Magoulas, A.; Makris, K.; Mavrothalassitis, G.; Papanagnou, E.-D.; et al. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J. Imaging 2021, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Ginn-Hedman, A.-M.; Self, T.S.; Jessen, S.L.; Heaps, C.L.; Weeks, B.R.; Clubb, F.J. Diffusible contrast-enhanced micro-CT improves visualization of stented vessels. Cardiovasc. Pathol. 2022, 60, 107428. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, A.; Broeckhoven, C.; Guelpa, A.; le Roux, S.G. Laboratory X-ray micro-computed tomography: A user guideline for biological samples. GigaScience 2017, 6, gix027. [Google Scholar] [CrossRef] [PubMed]
- Metscher, B.D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Quill, J.L.; Hill, A.J.; Laske, T.G.; Alfieri, O.; Iaizzo, P.A. Mitral leaflet anatomy revisited. J. Thorac. Cardiovasc. Surg. 2009, 137, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Herman, A.M.; Stephenson, J.M.; Wu, T.; Bahadur, A.N.; Burns, A.R.; Marrelli, S.P.; Wythe, J.D. Development of barium-based low viscosity contrast agents for micro CT vascular casting: Application to 3D visualization of the adult mouse cerebrovasculature. J. Neurosci. Res. 2020, 98, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, W. Iodine and disinfection: Theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system. Arch. Pharm. 1999, 332, 151–157. [Google Scholar] [CrossRef]
- Koeppel, D.R.; Boehm, I.B. Shortage of iodinated contrast media: Status and possible chances—A systematic review. Eur. J. Radiol. 2023, 164, 110853. [Google Scholar] [CrossRef]
- Gignac, P.M.; Kley, N.J.; Clarke, J.A.; Colbert, M.W.; Morhardt, A.C.; Cerio, D.; Cost, I.N.; Cox, P.G.; Daza, J.D.; Early, C.M.; et al. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J. Anat. 2016, 228, 889–909. [Google Scholar] [CrossRef]
- Smedby, Ö. Viscosity of Some Contemporary Contrast Media before and after Mixing with Whole Blood. Acta Radiol. 1992, 33, 600–605. [Google Scholar] [CrossRef]
- Kestin, J.; Sokolov, M.; Wakeham, W.A. Viscosity of liquid water in the range −8 °C to 150 °C. J. Phys. Chem. Ref. Data 1978, 7, 941–948. [Google Scholar] [CrossRef]
- Hakim, D.; Pinilla-Echeverri, N.; Coskun, A.U.; Pu, Z.; Kajander, O.A.; Rupert, D.; Maynard, C.; Cefalo, N.; Siasos, G.; Papafaklis, M.I.; et al. The role of endothelial shear stress, shear stress gradient, and plaque topography in plaque erosion. Atherosclerosis 2023, 376, 11–18. [Google Scholar] [CrossRef]
- Werner, G.S.; Jandt, E.; Krack, A.; Schwarz, G.; Mutschke, O.; Kuethe, F.; Ferrari, M.; Figulla, H.R. Growth Factors in the Collateral Circulation of Chronic Total Coronary Occlusions. Circulation 2004, 110, 1940–1945. [Google Scholar] [CrossRef]
- Zhang, D.; Xing, H.; Wang, R.; Tian, J.; Ju, Z.; Zhang, L.; Chen, H.; He, Y.; Song, X. A Novel Classification for Predicting Chronic Total Occlusion Percutaneous Coronary Intervention. Front. Cardiovasc. Med. 2022, 9, 762351. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Wakatsuki, T.; Yamaguchi, K.; Fukuda, D.; Kawabata, Y.; Matsuura, T.; Kusunose, K.; Ise, T.; Tobiume, T.; Yagi, S.; et al. Atherosclerotic Coronary Plaque Is Associated With Adventitial Vasa Vasorum and Local Inflammation in Adjacent Epicardial Adipose Tissue in Fresh Cadavers. Circ. J. 2020, 84, 769–775. [Google Scholar] [CrossRef]
- Diwakar, M.; Kumar, M. A review on CT image noise and its denoising. Biomed. Signal Process. Control 2018, 42, 73–88. [Google Scholar] [CrossRef]
- Nadkarni, R.; Clark, D.P.; Allphin, A.J.; Badea, C.T. A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images. Tomography 2023, 9, 1286–1302. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.L.; Tafforeau, P.; Wagner, W.L.; Jafree, D.J.; Bellier, A.; Werlein, C.; Kühnel, M.P.; Boller, E.; Walker-Samuel, S.; Robertus, J.L.; et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 2021, 18, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Sheng-Zhuang, M.; Jing-Wen, F.; Cheng-Wen, Y.; Yu, S. A method for metal artifacts reduction using virtual dual-energy CT images generated from single energy CT scans. In Proceedings of the 2019 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, Beijing, China, 26–28 October 2019; SPIE: Bellingham, WA, USA; Volume 11434. [Google Scholar]
Micro-CT Technique | |
---|---|
Voltage (kV) | 60 |
Current (micro-amperes) | 900 |
Focal spot (microns) | 54 |
Effective pixel pitch (mm) | 0.01989 |
Resolution (microns) | 19.83 |
Tube to detector (mm) | 1323.609 |
Tube to object (mm) | 207.34 |
Calculated ug (mm) | 0.209 |
Frame rate (fps) | 1 |
Projections | 3600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reifart, J.; Iaizzo, P. High-Resolution Iodine-Enhanced Micro-Computed Tomography of Intact Human Hearts for Detailed Coronary Microvasculature Analyses. J. Imaging 2024, 10, 173. https://doi.org/10.3390/jimaging10070173
Reifart J, Iaizzo P. High-Resolution Iodine-Enhanced Micro-Computed Tomography of Intact Human Hearts for Detailed Coronary Microvasculature Analyses. Journal of Imaging. 2024; 10(7):173. https://doi.org/10.3390/jimaging10070173
Chicago/Turabian StyleReifart, Joerg, and Paul Iaizzo. 2024. "High-Resolution Iodine-Enhanced Micro-Computed Tomography of Intact Human Hearts for Detailed Coronary Microvasculature Analyses" Journal of Imaging 10, no. 7: 173. https://doi.org/10.3390/jimaging10070173
APA StyleReifart, J., & Iaizzo, P. (2024). High-Resolution Iodine-Enhanced Micro-Computed Tomography of Intact Human Hearts for Detailed Coronary Microvasculature Analyses. Journal of Imaging, 10(7), 173. https://doi.org/10.3390/jimaging10070173