A Study on Data Selection for Object Detection in Various Lighting Conditions for Autonomous Vehicles
Abstract
:1. Introduction
2. Related Work
2.1. Low-Light Conditions
2.1.1. Hardware
2.1.2. Software
2.2. Object Detection
2.3. Datasets and Data Imbalance
3. Methodology
3.1. Metrics
3.2. Pre-Processing
3.3. Training and Evaluation
4. Results
4.1. Experimental Results
- Firstly, as expected, it can be seen that when increasing the percentage of daytime training data, the daytime object detection performance will generally increase. Similarly, the same result can be seen for night-time data (Table 5). The total number of images used in each model is the same, and the number of instances of each class is kept as close as possible between the models. This suggests that the increased percentage of daytime training images is giving the model new and useful information, which is reflected in the increase in performance.
- Secondly, when the model is initially trained with only day or night data, adding a small amount of the missing data will give a significant increase in performance for the category of the missing data. When the model is trained with solely one category of image (day or night) the performance in that category is better than that of other mixed training. As shown in Table 5, D00N100 and D100N00 perform best in the night and day categories, respectively. However, when there is a small amount of training data of the other category (day or night) added then there is a significant increase in the mAP for that category. As shown in Table 5 for the model D00N100, by replacing 10,000 images from night to day, the performance for day increased by 16%. Similarly for the D100N00 model, the replacement of 10,000 images from day to night improved the night-time performance by 10%.
- Thirdly, as shown in Figure 2 and in Table 5, the increase in the performance is not linear, which means simply increasing the amount of data may not yield the best results. For example, D50N50 outperforms D70N30 during the day even though D50N50 has less daytime training data. A similar situation can be seen when comparing D50N50 and D30N70 during night-time performance. This suggests that models may benefit more from carefully selected training data.
- Fourthly, the addition of dusk and dawn data will improve the day and night performance. As shown by examining Table 5 and Table 6, there was an improvement across the board with the addition of a small amount of dusk and dawn data. The highest increase was found in the D00N100 model, with an increase of 7.6% in mAP. The impact of this can be seen through the example in Figure 4, where the model that was trained with dusk and dawn data was able to detect the truck in the image, while the model without dusk and dawn was not able to detect this. For the objects that both models can detect, the model trained with dusk and dawn data performs the detection with higher confidence. The largest boost in performance from adding dusk/dawn data occurs when the training subset is initially comprised of only day or night, as shown in Figure 3. Although there was less of an increase in the other models, it still shows that dusk/dawn acts as a useful bridge between day and night images.
- Lastly, the best overall performance where robustness across different scenarios is the goal is achieved when there is a balanced mixture of data. Table 7 shows mAP(50) for a range of model architectures other than YOLOv5, and it can be seen that the same trend is seen across the different architectures. Although a model may have better performance specifically at day or at night if trained with only day or night data, respectively, there is a loss of robustness in contrary conditions. The optimal ratio used in the training data will depend on the specific end goal and use case of the model.
4.2. Considerations for Data Selection
- Ensure Data Distribution Matches the Use Case: While not specific to the low-light condition, the class imbalance problem is important (and is well-known). The class distribution of the training data should align with the use case in the training, validation, and evaluation subsets.
- Use Training Data from the correct domain: For models intended for daytime use, only daytime training data should be employed. For models intended for night-time use, employ only night-time training data. For example, in this study, as shown in Section 4.1, the D100N0 training subset performs the best during the day and D00N100 performs the best at night.
- Balance Training Data Across Multiple Domains: If the model is designed for use across multiple domains, ensure that the training data are balanced across these domains. Section 4.1 shows that an even split (D50N50) performs the best when working across domains.
- Incorporate Dusk and Dawn Data: Especially for models intended for night-time or multi-domain use cases, data from dusk and dawn in the training dataset enhances performance across varying lighting conditions.
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sawin, J.; Martinot, E.; Appleyard, D. Global Status Report. Renew. Energy World 2010, 13, 24–31. [Google Scholar]
- WHO. Road Traffic Injuries. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 2 April 2023).
- Highway Traffic Safety Administration; National Department of Transportation; NHTSA’s National Center for Statistics and Analysis. DOT HS 812 681; NHTSA: Washington, DC, USA, 2017; pp. 1–11.
- Varghese, C.; Shankar, U. Passenger Vehicle Occupant Fatalities by Day and Night—A Contrast. Ann. Emerg. Med. 2008, 51, 443. [Google Scholar] [CrossRef]
- Källhammer, J.E. Imaging: The road ahead for car night-vision. Nat. Photonics 2006, 5, 12–13. [Google Scholar] [CrossRef]
- Luo, Y.; Remillard, J.; Hoetzer, D. Pedestrian detection in near-infrared night vision system. In Proceedings of the IEEE Intelligent Vehicles Symposium, University of California, San Diego, CA, USA, 21–24 June 2010; pp. 51–58. [Google Scholar] [CrossRef]
- Constant, A.; Lagarde, E. Protecting vulnerable road users from injury. PLoS Med. 2010, 7, 1–4. [Google Scholar] [CrossRef]
- Benea, B.C.; Trusca, D.D.; Toganel, G.R.; Radu, A.I. Pedestrian visibility at night: The influence of the pedestrian clothing and the defective headlamp of the car. IOP Conf. Ser. Mater. Sci. Eng. 2019, 568, 012003. [Google Scholar] [CrossRef]
- Neumann, L.; Karg, M.; Zhang, S.; Scharfenberger, C.; Piegert, E.; Mistr, S.; Prokofyeva, O.; Thiel, R.; Vedaldi, A.; Zisserman, A.; et al. NightOwls: A Pedestrians at Night Dataset. In Proceedings of the Computer Vision—ACCV 2018; Jawahar, C.V., Li, H., Mori, G., Schindler, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 691–705. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, A.; Ye, J.; Wang, M.W. Making of Night Vision: Object Detection under Low-Illumination. IEEE Access 2020, 8, 123075–123086. [Google Scholar] [CrossRef]
- Chebrolu, K.N.R.; Kumar, P.N. Deep learning based pedestrian detection at all light conditions. In Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, Chennai, India, 4–6 April 2019; pp. 838–842. [Google Scholar] [CrossRef]
- Cucchiara, R.; Piccardi, M. Vehicle Detection under Day and Night Illumination. ISCS-IIA. 1999. Available online: https://www.researchgate.net/publication/2317716_Vehicle_Detection_under_Day_and_Night_Illumination (accessed on 17 June 2024).
- González, A.; Fang, Z.; Socarras, Y.; Serrat, J.; Vázquez, D.; Xu, J.; López, A.M. Pedestrian detection at day/night time with visible and FIR cameras: A comparison. Sensors 2016, 16, 820. [Google Scholar] [CrossRef]
- Hwang, S.; Park, J.; Kim, N.; Choi, Y.; Kweon, I.S. Multispectral pedestrian detection: Benchmark dataset and baseline. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1037–1045. [Google Scholar] [CrossRef]
- Nataprawira, J.; Gu, Y.; Goncharenko, I.; Kamijo, S. Pedestrian Detection on Multispectral Images in Different Lighting Conditions. In Proceedings of the Digest of Technical Papers—IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 10–12 January 2021. [Google Scholar] [CrossRef]
- Guan, D.; Cao, Y.; Yang, J.; Cao, Y.; Yang, M.Y. Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection. Inf. Fusion 2019, 50, 148–157. [Google Scholar] [CrossRef]
- Nataprawira, J.; Gu, Y.; Goncharenko, I.; Kamijo, S. Pedestrian detection using multispectral images and a deep neural network. Sensors 2021, 21, 2536. [Google Scholar] [CrossRef]
- Kruthiventi, S.S.S.; Sahay, P.; Biswal, R. Low-light pedestrian detection from RGB images using multi-modal knowledge distillation. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 4207–4211. [Google Scholar] [CrossRef]
- Royo, S.; Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef]
- Yahya, M.A.; Abdul-Rahman, S.; Mutalib, S. Object detection for autonomous vehicle with Lidar using deep learning. In Proceedings of the 2020 IEEE 10th International Conference on System Engineering and Technology, ICSET 2020—Proceedings, Shah Alam, Malaysia, 9 November 2020; pp. 207–212. [Google Scholar] [CrossRef]
- Guan, L.; Chen, Y.; Wang, G.; Lei, X. Real-time vehicle detection framework based on the fusion of lidar and camera. Electronics 2020, 9, 451. [Google Scholar] [CrossRef]
- Martinelli, N.S.; Boulanger, S.A. Cadillac DeVille thermal Imaging Night Vision System. SAE Technical Papers; SAE: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Nielsen, S.Z.; Gade, R.; Moeslund, T.B.; Skov-Petersen, H. Taking the temperature of pedestrian movement in public spaces. Transp. Res. Procedia 2014, 2, 660–668. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, G. An alternative of LiDAR in Nighttime: Unsupervised depth estimation based on single thermal image. In Proceedings of the2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, Waikoloa, HI, USA, 3–8 January 2021; pp. 3832–3842. [Google Scholar] [CrossRef]
- Stateczny, A.; Wlodarczyk-Sielicka, M.; Burdziakowski, P. Sensors and sensor’s fusion in autonomous vehicles. Sensors 2021, 21, 6586. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, F.; Chang, S.; Liu, Y.; Wu, H.; Feng, Z. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors 2022, 22, 2542. [Google Scholar] [CrossRef] [PubMed]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-Based Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 154–180. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Comput. Vision Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef] [PubMed]
- Land, E.H. The retinex theory of color vision. Sci. Am. 1977, 237, 108–128. [Google Scholar] [CrossRef]
- Guo, X. LIME: A method for low-light image enhancement. In Proceedings of the MM 2016—Proceedings of the 2016 ACM Multimedia Conference, Vancouver, BC, Canada, 26–31 October 2016; pp. 87–91. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, H.G.; Park, K.R. Convolutional neural network-based human detection in nighttime images using visible light camera sensors. Sensors 2017, 17, 1065. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934v1. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767v1. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolo V2.0. arXiv 2017, arXiv:1612.08242v1. [Google Scholar]
- Ultralytics. Yolov5. Available online: https://zenodo.org/records/5563715 (accessed on 27 October 2021).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lu, J.; Tang, S.; Wang, J.; Zhu, H.; Wang, Y. A Review on Object Detection Based on Deep Convolutional Neural Networks for Autonomous Driving. In Proceedings of the 31st Chinese Control and Decision Conference, CCDC 2019, Nanchang, China, 3–5 June 2019; pp. 5301–5308. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7, 128837–128868. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Nelson, J.; Solawetz, J. Responding to the Controversy about YOLOv5/. 2020. Available online: https://blog.roboflow.com/yolov4-versus-yolov5 (accessed on 21 October 2021).
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar] [CrossRef]
- Ultralytics. YOLOv8-Github. Available online: https://github.com/ultralytics/ultralytics (accessed on 17 June 2024).
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616v2. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54, 200:1–200:41. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv 2020, arXiv:2005.12872. [Google Scholar]
- Amjoud, A.B.; Amrouch, M. Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review. IEEE Access 2023, 11, 35479–35516. [Google Scholar] [CrossRef]
- Gupta, A.; Narayan, S.; Joseph, K.J.; Khan, S.; Khan, F.S.; Shah, M. OW-DETR: Open-world Detection Transformer. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 9225–9234. [Google Scholar] [CrossRef]
- Lv, W.; Xu, S.; Zhao, Y.; Wang, G.; Wei, J.; Cui, C.; Du, Y.; Dang, Q.; Liu, Y. DETRs Beat YOLOs on Real-time Object Detection. arXiv 2023, arXiv:2304.08069. [Google Scholar]
- Wu, C.E.; Chan, Y.M.; Chen, C.S.C.H.; Chen, W.C.; Chen, C.S.C.H. IMMVP: An Efficient Daytime and Nighttime On-Road Object Detector. In Proceedings of the IEEE 21st International Workshop on Multimedia Signal Processing, MMSP 2019, Kuala Lumpur, Malaysia, 27–29 September 2019. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Han, R.; Rao, Y. A new feature pyramid network for object detection. In Proceedings of the 2019 International Conference on Virtual Reality and Intelligent Systems, ICVRIS 2019, Jishou, China, 14–15 September 2019; pp. 428–431. [Google Scholar] [CrossRef]
- Loh, Y.P.; Chan, C.S. Getting to know low-light images with the Exclusively Dark dataset. Comput. Vis. Image Underst. 2019, 178, 30–42. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar] [CrossRef]
- Yogamani, S.; Hughes, C.; Horgan, J.; Sistu, G.; Varley, P.; O’Dea, D.; Uricar, M.; Milz, S.; Simon, M.; Amende, K.; et al. WoodScape: A Multi-Task, Multi-Camera Fisheye Dataset for Autonomous Driving. arXiv 2021, arXiv:1905.01489. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. arXiv 2016, arXiv:1604.01685. [Google Scholar]
- Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: A Benchmark. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 304–311. [Google Scholar] [CrossRef]
- Yang, W.; Yuan, Y.; Ren, W.; Liu, J.; Scheirer, W.J.; Wang, Z.; Zhang, T.; Zhong, Q.; Xie, D.; Pu, S.; et al. Advancing Image Understanding in Poor Visibility Environments: A Collective Benchmark Study. IEEE Trans. Image Process. 2020, 29, 5737–5752. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Q.; Xu, J.; Koltun, V. Learning to See in the Dark. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3291–3300. [Google Scholar] [CrossRef]
- Richter, S.R.; Hayder, Z.; Koltun, V. Playing for Benchmarks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2232–2241. [Google Scholar] [CrossRef]
- Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2633–2642. [Google Scholar] [CrossRef]
- Kher, K.B.; Aparna. Twilight, Dawn, and Dusk. Available online: https://www.timeanddate.com/astronomy/different-types-twilight.html (accessed on 2 April 2023).
- Li, G.; Yang, Y.; Qu, X.; Cao, D.; Li, K. A deep learning based image enhancement approach for autonomous driving at night. Knowl.-Based Syst. 2021, 213, 106617. [Google Scholar] [CrossRef]
- Liu, L.; Lu, S.; Zhong, R.; Wu, B.; Yao, Y.; Zhang, Q.; Shi, W. Computing Systems for Autonomous Driving: State of the Art and Challenges. IEEE Internet Things J. 2021, 8, 6469–6486. [Google Scholar] [CrossRef]
- Ali, M.; Chang, Q.; Tan, Y.; Zhang, H.; Sun, Z. A Comparative Study of Nighttime Object Detection with Datasets from Australia and China. In Proceedings of the 2020 Chinese Automation Congress, Shanghai, China, 6–8 November 2020; pp. 5407–5412. [Google Scholar]
- Iancu, D.T.; Sorici, A.; Florea, A.M. Object detection in autonomous driving—From large to small datasets. In Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2019, Pitesti, Romania, 27–29 June 2019; pp. 27–32. [Google Scholar] [CrossRef]
- Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark: A multi-class classification competition. In Proceedings of the International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1453–1460. [Google Scholar] [CrossRef]
- Unger, A.; Gelautz, M.; Seitner, F. A Study on Training Data Selection for Object Detection in Nighttime Traffic Scenes. Electron. Imaging 2020, 2020, 203-1–203-6. [Google Scholar] [CrossRef]
- Oksuz, K.; Cam, B.C.; Kalkan, S.; Akbas, E. Imbalance Problems in Object Detection: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3388–3415. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Leevy, J.L.; Khoshgoftaar, T.M.; Bauder, R.A.; Seliya, N. A survey on addressing high-class imbalance in big data. J. Big Data 2018, 5, 42. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, X.; Zhang, C.; Yang, X. Factors in finetuning deep model for object detection with long-tail distribution. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 864–873. [Google Scholar] [CrossRef]
- Chen, J.; Liu, D.; Xu, T.; Wu, S.; Cheng, Y.; Chen, E. Is Heuristic Sampling Necessary in Training Deep Object Detectors? IEEE Trans. Image Process. 2021, 30, 8454–8467. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.; Lipton, Z.C. What is the effect of importance weighting in deep learning? In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 1405–1419. [Google Scholar]
- Oksuz, K.; Cam, B.C.; Akbas, E.; Kalkan, S. Generating positive bounding boxes for balanced training of object detectors. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass, CO, USA, 1–5 March 2020; pp. 883–892. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Padilla, R.; Netto, S.L.; Da Silva, E.A. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the International Conference on Systems, Signals, and Image Processing, Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar] [CrossRef]
- Zhu, H.; Wei, H.; Li, B.; Yuan, X.; Kehtarnavaz, N. A review of video object detection: Datasets, metrics and methods. Appl. Sci. 2020, 10, 7834. [Google Scholar] [CrossRef]
- Ultralytics. YOLOv5—Github. Available online: https://github.com/ultralytics/yolov5 (accessed on 27 October 2021).
Architectures | # Parameters (M) | Frame per Second (FPS) | |
---|---|---|---|
YOLOv5s | 7.2 | 156 | 37.4 |
YOLOv7n | 6.2 | 286 | 38.7 |
DETR | 41 | 28 | 43.3 |
RT-DETR | 32 | 114 | 53 |
Faster-RCNN | 166 | 16 | 39 |
Time of Day | Label Count |
---|---|
Day | 41,986 |
Night | 31,900 |
Dusk/Dawn | 5942 |
Total | 79,828 |
Classes | Each Training Dataset | Each Validation Dataset | Each Evaluation Datasets | Classes (As a % of Total) |
---|---|---|---|---|
Car | 578,549 | 63,699 | 123,206 | 55.006 |
Traffic Sign | 193,419 | 21,840 | 44,097 | 18.688 |
Traffic Light | 138,272 | 17,180 | 42,951 | 14.701 |
Pedestrian | 76,020 | 8447 | 14,548 | 7.228 |
Truck | 23,137 | 2571 | 5049 | 2.200 |
Bus | 9819 | 1091 | 1902 | 0.934 |
Bicycle | 5877 | 653 | 1175 | 0.559 |
Rider | 3757 | 417 | 745 | 0.357 |
Motorcycle | 2508 | 279 | 533 | 0.238 |
Ratio Name | Day Percentage | Night Percentage | Image Count |
---|---|---|---|
D100N00 | 100 | 00 | 32,000 |
D70N30 | 70 | 30 | 32,000 |
D50N50 | 50 | 50 | 32,000 |
D30N70 | 30 | 70 | 32,000 |
D00N100 | 00 | 100 | 32,000 |
Training Data (Image Count) | Evaluation Results, without Dawn (mAP(50)) | ||||||
---|---|---|---|---|---|---|---|
Ratio | Day | Night | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn |
D00N100 | 0 | 31,890 | 0 | 0.423 | 0.763 | 0.540 | 0.462 |
D30N70 | 9850 | 22,982 | 0 | 0.580 | 0.557 | 0.570 | 0.580 |
D50N50 | 16,416 | 16,416 | 0 | 0.659 | 0.657 | 0.650 | 0.607 |
D70N30 | 22,982 | 9850 | 0 | 0.615 | 0.533 | 0.586 | 0.610 |
D100N00 | 31,890 | 0 | 0 | 0.724 | 0.436 | 0.624 | 0.604 |
Training Data (Image Count) | Evaluation Results, with Dusk/Dawn (mAP(50)) | ||||||
---|---|---|---|---|---|---|---|
Ratio | Day | Night | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn |
D00N100 | 0 | 31,890 | 3520 | 0.499 | 0.769 | 0.586 | 0.647 |
D30N70 | 9850 | 22,982 | 3721 | 0.584 | 0.555 | 0.570 | 0.695 |
D50N50 | 16,416 | 16,416 | 4278 | 0.655 | 0.643 | 0.644 | 0.710 |
D70N30 | 22,982 | 9850 | 2383 | 0.617 | 0.533 | 0.585 | 0.617 |
D100N00 | 31890 | 0 | 3520 | 0.724 | 0.451 | 0.628 | 0.611 |
YOLOv5s | Faster-RCNN | RT-DETR | YOLOv7n | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratios | Day | Night | Mixed | Day | Night | Mixed | Day | Night | Mixed | Day | Night | Mixed |
D00N100 | 0.423 | 0.763 | 0.54 | 0.419 | 0.676 | 0.504 | 0.465 | 0.591 | 0.509 | 0.438 | 0.553 | 0.482 |
D30N70 | 0.58 | 0.557 | 0.57 | 0.477 | 0.454 | 0.469 | 0.541 | 0.522 | 0.531 | 0.55 | 0.535 | 0.54 |
D50N50 | 0.659 | 0.657 | 0.65 | 0.557 | 0.559 | 0.56 | 0.556 | 0.543 | 0.546 | 0.583 | 0.556 | 0.57 |
D70N30 | 0.615 | 0.533 | 0.586 | 0.508 | 0.454 | 0.489 | 0.507 | 0.463 | 0.49 | 0.585 | 0.525 | 0.563 |
D100N00 | 0.724 | 0.436 | 0.624 | 0.62 | 0.383 | 0.536 | 0.563 | 0.443 | 0.516 | 0.611 | 0.45 | 0.551 |
mAP(50:95)ALL | Evaluation Result mAP(50:95)(Small) | Evaluation Result mAP(50:95)(Medium) | Evaluation Result mAP(50:95)(Large) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | Day | Night | Mixed | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn |
D00N100 | 0.211 | 0.447 | 0.287 | 0.227 | 0.088 | 0.209 | 0.117 | 0.105 | 0.274 | 0.496 | 0.342 | 0.288 | 0.362 | 0.595 | 0.474 | 0.385 |
D30N70 | 0.303 | 0.286 | 0.30 | 0.303 | 0.143 | 0.127 | 0.139 | 0.14 | 0.371 | 0.309 | 0.351 | 0.375 | 0.504 | 0.435 | 0.497 | 0.486 |
D50N50 | 0.366 | 0.357 | 0.355 | 0.314 | 0.182 | 0.159 | 0.166 | 0.146 | 0.444 | 0.401 | 0.413 | 0.391 | 0.578 | 0.508 | 0.548 | 0.513 |
D70N30 | 0.325 | 0.271 | 0.305 | 0.326 | 0.154 | 0.107 | 0.138 | 0.146 | 0.402 | 0.298 | 0.362 | 0.404 | 0.532 | 0.417 | 0.514 | 0.521 |
D10N00 | 0.411 | 0.218 | 0.352 | 0.317 | 0.199 | 0.08 | 0.162 | 0.149 | 0.493 | 0.246 | 0.42 | 0.388 | 0.653 | 0.356 | 0.546 | 0.533 |
mAP(50:95)ALL | Evaluation Result mAP(50:95)(Small) | Evaluation Result mAP(50:95)(Medium) | Evaluation Result mAP(50:95)(Large) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | Day | Night | Mixed | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn | Day | Night | Mixed | Dusk/Dawn |
D00N100 | 0.254 | 0.463 | 0.316 | 0.362 | 0.111 | 0.227 | 0.133 | 0.184 | 0.319 | 0.510 | 0.368 | 0.438 | 0.435 | 0.619 | 0.529 | 0.545 |
D30N70 | 0.311 | 0.278 | 0.295 | 0.393 | 0.145 | 0.118 | 0.142 | 0.194 | 0.384 | 0.306 | 0.342 | 0.474 | 0.523 | 0.426 | 0.488 | 0.627 |
D50N50 | 0.366 | 0.359 | 0.359 | 0.411 | 0.182 | 0.157 | 0.170 | 0.199 | 0.447 | 0.405 | 0.420 | 0.500 | 0.569 | 0.499 | 0.576 | 0.632 |
D70N30 | 0.330 | 0.271 | 0.306 | 0.326 | 0.159 | 0.119 | 0.145 | 0.148 | 0.405 | 0.298 | 0.36 | 0.408 | 0.53 | 0.427 | 0.486 | 0.534 |
D100N00 | 0.411 | 0.218 | 0.344 | 0.323 | 0.201 | 0.080 | 0.166 | 0.144 | 0.496 | 0.253 | 0.413 | 0.401 | 0.654 | 0.342 | 0.539 | 0.552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Parsi, A.; Mullins, D.; Horgan, J.; Ward, E.; Eising, C.; Denny, P.; Deegan, B.; Glavin, M.; Jones, E. A Study on Data Selection for Object Detection in Various Lighting Conditions for Autonomous Vehicles. J. Imaging 2024, 10, 153. https://doi.org/10.3390/jimaging10070153
Lin H, Parsi A, Mullins D, Horgan J, Ward E, Eising C, Denny P, Deegan B, Glavin M, Jones E. A Study on Data Selection for Object Detection in Various Lighting Conditions for Autonomous Vehicles. Journal of Imaging. 2024; 10(7):153. https://doi.org/10.3390/jimaging10070153
Chicago/Turabian StyleLin, Hao, Ashkan Parsi, Darragh Mullins, Jonathan Horgan, Enda Ward, Ciaran Eising, Patrick Denny, Brian Deegan, Martin Glavin, and Edward Jones. 2024. "A Study on Data Selection for Object Detection in Various Lighting Conditions for Autonomous Vehicles" Journal of Imaging 10, no. 7: 153. https://doi.org/10.3390/jimaging10070153
APA StyleLin, H., Parsi, A., Mullins, D., Horgan, J., Ward, E., Eising, C., Denny, P., Deegan, B., Glavin, M., & Jones, E. (2024). A Study on Data Selection for Object Detection in Various Lighting Conditions for Autonomous Vehicles. Journal of Imaging, 10(7), 153. https://doi.org/10.3390/jimaging10070153