A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis
Abstract
:1. Introduction
1.1. Challenges in a Standard Workflow for Image Analysis
1.2. Available Tools for Image Analysis
1.3. How Is Image Analysis Currently Performed?
1.4. A Standard and a New Workflow for Image Analysis
2. Materials and Methods
2.1. Comparison of a Standard and New Workflow with an Exemplary Image Analysis Scenario
2.2. Creating a New Project for an Exemplary Image Analysis with Tyche
2.3. Analyzing Images Using Tyche
2.4. Displaying Results with Tyche
2.5. Technical Aspects of Tyche
3. Results
4. Discussion
4.1. Differences between the Workflows
4.2. Advantages and Disadvantages of the New Workflow
4.3. Settings and Study Designs Where the New Workflow Could Be Used
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sabih, D.E.; Sabih, A.; Sabih, Q.; Khan, A.N. Image Perception and Interpretation of Abnormalities; Can We Believe Our Eyes? Can We Do Something about It? Insights Imaging 2011, 2, 47–55. [Google Scholar] [CrossRef]
- Waite, S.; Scott, J.; Gale, B.; Fuchs, T.; Kolla, S.; Reede, D. Interpretive Error in Radiology. Am. J. Roentgenol. 2017, 208, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Karanicolas, P.J.; Farrokhyar, F.; Bhandari, M. Practical Tips for Surgical Research: Blinding: Who, What, When, Why, How? Can. J. Surg. J. Can. Chir. 2010, 53, 345–348. [Google Scholar]
- Nature Nature Portfolio—Reporting Summary 2021. Available online: https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards/ (accessed on 26 January 2024).
- Neaton, J.D.; Duchene, A.G.; Svendsen, K.H.; Wentworth, D. An Examination of the Efficiency of Some Quality Assurance Methods Commonly Employed in Clinical Trials. Statist. Med. 1990, 9, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, I.; Lundström, M.; Stenevi, U.; Ehinger, B. Data Reliability and Structure in the Swedish National Cataract Register. Acta Ophthalmol. Scand. 2001, 79, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Eliceiri, K.W.; Berthold, M.R.; Goldberg, I.G.; Ibáñez, L.; Manjunath, B.S.; Martone, M.E.; Murphy, R.F.; Peng, H.; Plant, A.L.; Roysam, B.; et al. Biological Imaging Software Tools. Nat. Methods 2012, 9, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
- Mi, H.; Gong, C.; Sulam, J.; Fertig, E.J.; Szalay, A.S.; Jaffee, E.M.; Stearns, V.; Emens, L.A.; Cimino-Mathews, A.M.; Popel, A.S. Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Front. Physiol. 2020, 11, 583333. [Google Scholar] [CrossRef]
- RedBrick AI: Foundation of Healthcare AI. Available online: https://www.redbrickai.com/ (accessed on 26 January 2024).
- Zillin—Online Image Annotation, Dataset Management and Collaboration Tool. Available online: https://zillin.io/ (accessed on 26 January 2024).
- Cothren, S.; Meyer, J.; Hartman, J. Blinded Visual Scoring of Images Using the Freely-Available Software Blinder. Bio-Protocol 2018, 8, e3103. [Google Scholar] [CrossRef] [PubMed]
- Glasson, S.S.; Chambers, M.G.; Berg, W.B.V.D.; Little, C.B. The OARSI Histopathology Initiative—Recommendations for Histological Assessments of Osteoarthritis in the Mouse. Osteoarthr. Cartil. 2010, 18, S17–S23. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Chen, Y.; Xu, H.; Qi, T.; Xiong, A.; Wang, D.; Yu, F.; Weng, J.; Zeng, H. Teriparatide Ameliorates Articular Cartilage Degradation and Aberrant Subchondral Bone Remodeling in DMM Mice. J. Orthop. Transl. 2023, 38, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qin, Z.; Jiang, X.; Fang, D.; Lu, Z.; Zheng, L.; Zhao, J. ROS-Responsive PPGF Nanofiber Membrane as a Drug Delivery System for Long-Term Drug Release in Attenuation of Osteoarthritis. NPJ Regen. Med. 2022, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Yong, K.W.; Ead, M.; Sommerfeldt, M.; Skene-Arnold, T.D.; Westover, L.; Duke, K.; Laouar, L.; Elliott, J.A.W.; Jomha, N.M. Vitrified Particulated Articular Cartilage for Joint Resurfacing: A Swine Model. Am. J. Sports Med. 2022, 50, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Aitken, D.; Wu, F.; Squibb, K.; Cicuttini, F.; Jones, G. Association between Radiographic Hand Osteoarthritis and Bone Microarchitecture in a Population-Based Sample. Arthritis Res. Ther. 2022, 24, 223. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, M.; Ahrens, N.S.; Snel, L.; Narcisi, R.; Kamali, S.A.; van Osch, G.J.V.M.; Meij, B.P.; Mastbergen, S.C.; Sivasubramaniyan, K.; Tryfonidou, M.A. Synovial Membrane-Derived Mesenchymal Progenitor Cells from Osteoarthritic Joints in Dogs Possess Lower Chondrogenic-, and Higher Osteogenic Capacity Compared to Normal Joints. Stem Cell Res. Ther. 2022, 13, 457. [Google Scholar] [CrossRef]
- Hu, W.; Lin, J.; Wei, J.; Yang, Y.; Fu, K.; Zhu, T.; Zhu, H.; Zheng, X. Modelling Osteoarthritis in Mice via Surgical Destabilization of the Medial Meniscus with or without a Stereomicroscope. Bone Jt. Res. 2022, 11, 518–527. [Google Scholar] [CrossRef]
- Teng, Y.; Jin, Z.; Ren, W.; Lu, M.; Hou, M.; Zhou, Q.; Wang, W.; Yang, H.; Zou, J. Theaflavin-3,3′-Digallate Protects Cartilage from Degradation by Modulating Inflammation and Antioxidant Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 3047425. [Google Scholar] [CrossRef]
- Abou-Jaoude, A.; Courtes, M.; Badique, L.; Mahmoud, D.E.; Abboud, C.; Mlih, M.; Justiniano, H.; Milbach, M.; Lambert, M.; Lemle, A.; et al. ShcA Promotes Chondrocyte Hypertrophic Commitment and Osteoarthritis in Mice through RunX2 Nuclear Translocation and YAP1 Inactivation. Osteoarthr. Cartil. 2022, 30, 1365–1375. [Google Scholar] [CrossRef]
- Bai, R.; Miao, M.Z.; Li, H.; Wang, Y.; Hou, R.; He, K.; Wu, X.; Jin, H.; Zeng, C.; Cui, Y.; et al. Increased Wnt/β-Catenin Signaling Contributes to Autophagy Inhibition Resulting from a Dietary Magnesium Deficiency in Injury-Induced Osteoarthritis. Arthritis Res. Ther. 2022, 24, 165. [Google Scholar] [CrossRef] [PubMed]
- Xian, S.; Lin, Z.; Zhou, C.; Wu, X. The Protective Effect of Evodiamine in Osteoarthritis: An In Vitro and In Vivo Study in Mice Model. Front. Pharmacol. 2022, 13, 899108. [Google Scholar] [CrossRef] [PubMed]
- Dreier, R.; Ising, T.; Ramroth, M.; Rellmann, Y. Estradiol Inhibits ER Stress-Induced Apoptosis in Chondrocytes and Contributes to a Reduced Osteoarthritic Cartilage Degeneration in Female Mice. Front. Cell Dev. Biol. 2022, 10, 913118. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Chang, B.; Wei, Y.; Yang, Y.; Zhang, H.; Liu, J.; Piao, L.; Bai, L. Curcumin Exerts Chondroprotective Effects against Osteoarthritis by Promoting AMPK/PINK1/Parkin-Mediated Mitophagy. Biomed. Pharmacother. 2022, 151, 113092. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, K.; Fang, X.; Lu, F.; Cheng, P.; Song, X.; Zhang, W.; Yao, C.; Zhu, J.; Chen, H. Saikosaponin D Inhibited IL-1β Induced ATDC 5 Chondrocytes Apoptosis In Vitro and Delayed Articular Cartilage Degeneration in OA Model Mice In Vivo. Front. Pharmacol. 2022, 13, 845959. [Google Scholar] [CrossRef] [PubMed]
- Stolberg-Stolberg, J.; Boettcher, A.; Sambale, M.; Stuecker, S.; Sherwood, J.; Raschke, M.; Pap, T.; Bertrand, J. Toll-like Receptor 3 Activation Promotes Joint Degeneration in Osteoarthritis. Cell Death Dis. 2022, 13, 224. [Google Scholar] [CrossRef] [PubMed]
- Yi, N.; Mi, Y.; Xu, X.; Li, N.; Zeng, F.; Yan, K.; Tan, K.; Kuang, G.; Lu, M. Baicalein Alleviates Osteoarthritis Progression in Mice by Protecting Subchondral Bone and Suppressing Chondrocyte Apoptosis Based on Network Pharmacology. Front. Pharmacol. 2022, 12, 788392. [Google Scholar] [CrossRef]
- Wu, H.; Peng, Z.; Xu, Y.; Sheng, Z.; Liu, Y.; Liao, Y.; Wang, Y.; Wen, Y.; Yi, J.; Xie, C.; et al. Engineered Adipose-Derived Stem Cells with IGF-1-Modified MRNA Ameliorates Osteoarthritis Development. Stem Cell Res. Ther. 2022, 13, 19. [Google Scholar] [CrossRef]
- Mlost, J.; Kac, P.; Kędziora, M.; Starowicz, K. Antinociceptive and Chondroprotective Effects of Prolonged β-Caryophyllene Treatment in the Animal Model of Osteoarthritis: Focus on Tolerance Development. Neuropharmacology 2022, 204, 108908. [Google Scholar] [CrossRef]
- Clement-Lacroix, P.; Little, C.B.; Smith, M.M.; Cottereaux, C.; Merciris, D.; Meurisse, S.; Mollat, P.; Touitou, R.; Brebion, F.; Gosmini, R.; et al. Pharmacological Characterization of GLPG1972/S201086, a Potent and Selective Small-Molecule Inhibitor of ADAMTS5. Osteoarthr. Cartil. 2022, 30, 291–301. [Google Scholar] [CrossRef]
- Rösch, G.; Bagdadi, K.E.; Muschter, D.; Taheri, S.; Dorn, C.; Meurer, A.; Straub, R.H.; Zaucke, F.; Schilling, A.F.; Grässel, S.; et al. Sympathectomy Aggravates Subchondral Bone Changes during Osteoarthritis Progression in Mice without Affecting Cartilage Degeneration or Synovial Inflammation. Osteoarthr. Cartil. 2021, 30, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Rösch, G.; Muschter, D.; Taheri, S.; Meurer, A.; Schilling, F.; Grässel, S.; Zaucke, F.; Jenei-Lanzl, Z. Β2-Adrenoceptor Deficiency in Experimental Osteoarthritis Leads to Exacerbation of Subchondral Bone Changes without Affecting Cartilage and Synovium. Osteologie 2021, 30, 339. [Google Scholar] [CrossRef]
- Smith, A.C.; Bagnall, R.S.; Brodersen, K.; Champion, C.B.; Erskine, A.; Huebner, S.R. The Encyclopedia of Ancient History, 1st ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Glasson, S.S.; Blanchet, T.J.; Morris, E.A. The Surgical Destabilization of the Medial Meniscus (DMM) Model of Osteoarthritis in the 129/SvEv Mouse. Osteoarthr. Cartil. 2007, 15, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Micicoi, L.; Ernat, J.; Schippers, P.; de Dompsure, R.B.; Bronsard, N.; Gonzalez, J.-F.; Micicoi, G. Normo-or Slightly Overcorrection Show Better Results after Medial Closing Wedge High Tibial Osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4276–4284. [Google Scholar] [CrossRef] [PubMed]
- Micicoi, L.; Machado, A.; Ernat, J.; Schippers, P.; de Dompsure, R.B.; Bronsard, N.; Gonzalez, J.-F.; Micicoi, G. Restoration of Preoperative Tibial Alignment Improves Functional Results after Medial Unicompartmental Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5171–5179. [Google Scholar] [CrossRef] [PubMed]
- Schippers, P.; Lacouture, J.-D.; Junker, M.; Baranowski, A.; Drees, P.; Gercek, E.; Boileau, P. Can We Separately Measure Glenoid versus Humeral Lateralization and Distalization in Reverse Shoulder Arthroplasty? J. Shoulder Elb. Surg. 2023. [Google Scholar] [CrossRef] [PubMed]
- Schippers, P.; Meurer, A.; Schnetz, M.; Ewald, L.; Ruckes, C.; Hoffmann, R.; Gramlich, Y. A Novel Tool for Collaborative and Blinded Orthopedic Image Analysis. Life 2023, 13, 1805. [Google Scholar] [CrossRef]
- Schippers, P.; Drees, P.; Gercek, E.; Wunderlich, F.; Müller, D.; Ruckes, C.; Meyer, A.; Klein, S.; Fischer, S. The Controversial Definition of Normal Toe Alignment. J. Clin. Med. 2023, 12, 3509. [Google Scholar] [CrossRef]
- Patsko, E.; Godolphin, P.J.; Thomas, K.S.; Hepburn, T.; Mitchell, E.J.; Craig, F.E.; Bath, P.M.; Montgomery, A.A. Investigating the Effect of Independent, Blinded Digital Image Assessment on the STOP GAP Trial. Trials 2017, 18, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schippers, P.; Rösch, G.; Sohn, R.; Holzapfel, M.; Junker, M.; Rapp, A.E.; Jenei-Lanzl, Z.; Drees, P.; Zaucke, F.; Meurer, A. A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis. J. Imaging 2024, 10, 33. https://doi.org/10.3390/jimaging10020033
Schippers P, Rösch G, Sohn R, Holzapfel M, Junker M, Rapp AE, Jenei-Lanzl Z, Drees P, Zaucke F, Meurer A. A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis. Journal of Imaging. 2024; 10(2):33. https://doi.org/10.3390/jimaging10020033
Chicago/Turabian StyleSchippers, Philipp, Gundula Rösch, Rebecca Sohn, Matthias Holzapfel, Marius Junker, Anna E. Rapp, Zsuzsa Jenei-Lanzl, Philipp Drees, Frank Zaucke, and Andrea Meurer. 2024. "A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis" Journal of Imaging 10, no. 2: 33. https://doi.org/10.3390/jimaging10020033
APA StyleSchippers, P., Rösch, G., Sohn, R., Holzapfel, M., Junker, M., Rapp, A. E., Jenei-Lanzl, Z., Drees, P., Zaucke, F., & Meurer, A. (2024). A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis. Journal of Imaging, 10(2), 33. https://doi.org/10.3390/jimaging10020033