Joint Image Processing with Learning-Driven Data Representation and Model Behavior for Non-Intrusive Anemia Diagnosis in Pediatric Patients
Abstract
:1. Introduction
- Image processing—the study employs a detailed image processing pipeline to extract 181 features from 13 categories for anemia detection. The images are resized, converted to grayscale, and normalized. Segmentation isolates regions of interest, with additional calculations on region properties, color space conversions (hue, saturation, value (HSV) and A (green–red), B (blue–yellow) (LAB)), and texture features (gray-level co-occurrence matrix (GLCM) and extracting texture features (LBP)). Color moments, histograms, and edge detection further aid in analyzing color and texture variations. These features collectively enhance the non-intrusive detection of anemia by providing a comprehensive assessment of visual cues;
- Advanced learning techniques—a deep multilayered network based on long short-term memory (LSTM) is used to classify images into anemic and non-anemic cases. The hyperparameters are optimized using Bayesian approaches to enhance model performance;
- Innovative model framework—the LSTM model is incorporated into a new learning framework involving a recurrent expansion layer [24], forming the recurrent expansion network (RexNet). RexNet is designed to learn both data representations and model behavior, improving the understanding of the optimal data features for an accurate diagnosis;
- Application and evaluation—the proposed method is applied to three public datasets, namely conjunctival eye images, palmar images, and fingernail images, as described in previous studies [21,22,23]. Unlike prior works that primarily focus on ROC curves and accuracy metrics, this study includes a comprehensive range of both visual and numerical evaluations throughout all stages, from data preprocessing to model assessment. It features bar charts, illustrating class proportions and feature importance, scatter plots of extracted and selected features, learning curves, confusion matrices, ROC curves, and various other metrics. Additionally, this work compares the proposed approach with LSTM and other related methods, highlighting the advantages and limitations of the approach.
2. Materials
2.1. Original Data Description
2.2. Image-Preprocessing Methodology
2.3. Data Visualization and Preprocessing Results
3. Methods
4. Results
4.1. Results and Comparison
4.2. Overal Discussion, Comparisons, and Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dass, J.; Nayak, A.R.; Puri, V.; Aggarwal, M. Congenital Dyserythropoietic Anemia in Children: Case Series with Review of Literature. Pediatr. Hematol. Oncol. J. 2024, 9, 55–61. [Google Scholar] [CrossRef]
- Meza, K.; Biswas, S.; Talmor, C.; Baqai, K.; Samsonov, D.; Solomon, S.; Akchurin, O. Response to Oral Iron Therapy in Children with Anemia of Chronic Kidney Disease. Pediatr. Nephrol. 2024, 39, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Shimano, K.A.; Rothman, J.A.; Allen, S.W.; Castillo, P.; de Jong, J.L.O.; Dror, Y.; Geddis, A.E.; Lau, B.W.; McGuinn, C.; Narla, A.; et al. Treatment of Newly Diagnosed Severe Aplastic Anemia in Children: Evidence-Based Recommendations. Pediatr. Blood Cancer 2024, 71, e31070. [Google Scholar] [CrossRef] [PubMed]
- Shimano, K.A.; Sasa, G.; Broglie, L.; Gloude, N.J.; Myers, K.; Nakano, T.A.; Sharathkumar, A.; Rothman, J.A.; Pereda, M.A.; Overholt, K.; et al. Treatment of Relapsed/Refractory Severe Aplastic Anemia in Children: Evidence-Based Recommendations. Pediatr. Blood Cancer 2024, 71, e31075. [Google Scholar] [CrossRef]
- Naithani, R.; Agrawal, N.; Mahapatra, M.; Kumar, R.; Pati, H.P.; Choudhry, V.P. Autoimmune Hemolytic Anemia in Children. Pediatr. Hematol. Oncol. 2007, 24, 309–315. [Google Scholar] [CrossRef]
- Abdulkadir, A.; Abubakar, B.; Tela, U.; Ahmed, M.; Bello, A.; Ahmad, M. Prevalence of Enuresis among Children and Adolescents: A Systematic Review and Meta-Analysis. Sahel Med. J. 2019, 22, 157–163. [Google Scholar] [CrossRef]
- Dehghani, A.; Molani-Gol, R.; Rafraf, M.; Mohammadi-Nasrabadi, F.; Khodayari-Zarnaq, R. Iron Deficiency Anemia Status in Iranian Pregnant Women and Children: An Umbrella Systematic Review and Meta-Analysis. BMC Pregnancy Childbirth 2024, 24, 1–12. [Google Scholar] [CrossRef]
- Jiya, F.B.; Jiya, N.M.; Baba, J.; Bakare, A.T.; Ibitoye, P.K.; Adamu, A.; Isezuo, K.O.; Abba, M.H. Depressive Symptoms among Children with Sickle Cell Anemia in a Tertiary Health Facility in North-Western Nigeria. Niger. J. Basic Clin. Sci. 2024, 21, 58–64. [Google Scholar] [CrossRef]
- Yuran, N.; Ben-Ami, T.; Kori, M. Severe Unexplained Iron Deficiency Anemia in Children: High Yield of Upper Gastrointestinal Endoscopy Regardless of Gastrointestinal Symptoms. J. Pediatr. Hematol. Oncol. 2024, 46, 248–251. [Google Scholar] [CrossRef]
- Lin, X.Y.; Li, Y.F.; Zhu, Y.X. Correlation between Nutritional Status of Vitamin A and Anemia in Children with Respiratory Infection Symptoms or Healthy Infants. Matern. Child Health Care China 2020, 35, 1051–1053. [Google Scholar]
- Piekarska, A.; Pawelec, K.; Szmigielska-Kapłon, A.; Ussowicz, M. The State of the Art in the Treatment of Severe Aplastic Anemia: Immunotherapy and Hematopoietic Cell Transplantation in Children and Adults. Front. Immunol. 2024, 15, 1378432. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Kojima, S. Updated Guidelines for the Treatment of Acquired Aplastic Anemia in Children. Curr. Oncol. Rep. 2018, 20, 67. [Google Scholar] [CrossRef]
- Bello-Manga, H.; DeBaun, M.R.; Kassim, A.A. Epidemiology and Treatment of Relative Anemia in Children with Sickle Cell Disease in Sub-Saharan Africa. Expert Rev. Hematol. 2016, 9, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, K.; Salamonowicz, M.; Panasiuk, A.; Demkow, U.; Kowalczyk, J.; Balwierz, W.; Zaleska-Czepko, E.; Chybicka, A.; Szmyd, K.; Szczepanski, T.; et al. First-Line Immunosuppressive Treatment in Children with Aplastic Anemia: Rabbit Antithymocyte Globulin. Adv. Exp. Med. Biol. 2015, 836, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.; Lubin, B.H. Suggested Guidelines for the Treatment of Children with Sickle Cell Anemia. Hematol. Oncol. Clin. North Am. 1987, 1, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Barulina, M.; Ulitin, I.; Kaluta, T.; Fedonnikov, A. An Overview of Using Deep Learning Algorithms for Anemia Detection. Stud. Syst. Decis. Control 2023, 457, 605–615. [Google Scholar] [CrossRef]
- Appiahene, P.; Dogbe, S.S.D.; Kobina, E.E.Y.; Dartey, P.S.; Afrifa, S.; Donkoh, E.T.; Asare, J.W. Application of Ensemble Models Approach in Anemia Detection Using Images of the Palpable Palm. Med. Nov. Technol. Devices 2023, 20, 100269. [Google Scholar] [CrossRef]
- Appiahene, P.; Chaturvedi, K.; Asare, J.W.; Donkoh, E.T.; Prasad, M. CP-AnemiC: A Conjunctival Pallor Dataset and Benchmark for Anemia Detection in Children. Med. Nov. Technol. Devices 2023, 18, 100244. [Google Scholar] [CrossRef]
- Appiahene, P.; Asare, J.W.; Donkoh, E.T.; Dimauro, G.; Maglietta, R. Detection of Iron Deficiency Anemia by Medical Images: A Comparative Study of Machine Learning Algorithms. BioData Min. 2023, 16, 2. [Google Scholar] [CrossRef]
- Asare, J.W.; Appiahene, P.; Donkoh, E.T.; Dimauro, G. Iron Deficiency Anemia Detection Using Machine Learning Models: A Comparative Study of Fingernails, Palm and Conjunctiva of the Eye Images. Eng. Rep. 2023, 5, e12667. [Google Scholar] [CrossRef]
- Asare, J.W.; Appiahene, P.; Donkoh, E. Anemia Detection Using Palpable Palm Image Datasets from Ghana. Mendeley Data 2022. [Google Scholar] [CrossRef]
- Asare, J.W.; Appiahene, P.; Donkoh, E. CP-AnemiC (A Conjunctival Pallor) Dataset from Ghana. Mendeley Data 2023. [Google Scholar] [CrossRef]
- Asare, J.W.; Appiahene, P.; Donkoh, E. Detection of Anemia Using Colour of the Fingernails Image Datasets from Ghana. Mendeley Data 2020. [Google Scholar] [CrossRef]
- Berghout, T.; Benbouzid, M.; Ferrag, M.A. Multiverse Recurrent Expansion With Multiple Repeats: A Representation Learning Algorithm for Electricity Theft Detection in Smart Grids. IEEE Trans. Smart Grid 2023, 14, 4693–4703. [Google Scholar] [CrossRef]
- Luo, M.R. CIELAB. In Encyclopedia of Color Science and Technology; Luo, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–7. ISBN 978-3-642-27851-8. [Google Scholar]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A Review of Medical Image Data Augmentation Techniques for Deep Learning Applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef]
- Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data Augmentation for Medical Imaging: A Systematic Literature Review. Comput. Biol. Med. 2023, 152, 106391. [Google Scholar] [CrossRef]
- El Jiani, L.; El Filali, S.; Benlahmer, E.H. Overcome Medical Image Data Scarcity by Data Augmentation Techniques: A Review. In Proceedings of the 2022 International Conference on Microelectronics (ICM), Casablanca, Morocco, 4–7 December 2022; pp. 21–24. [Google Scholar] [CrossRef]
- Brunner, C.; Wuillemin, W.A. Iron Deficiency and Iron Deficiency Anemia—Symptoms and Therapy. Ther. Umsch. 2010, 67, 219–223. [Google Scholar] [CrossRef]
- Qazzaz, A.A.M.; Alsabbagh, H.A. An Overview of the Most Important Methods for Coloring Grayscale Images. Al-Furat J. Innov. Electron. Comput. Eng. 2024, 3, 45–67. [Google Scholar] [CrossRef]
- Shao, J.; Hu, K.; Wang, C.; Xue, X.; Raj, B. Is Normalization Indispensable for Training Deep Neural Network? In Proceedings of the Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: New York, NY, USA, 2020; Volume 33, pp. 13434–13444. [Google Scholar]
- Patro, S.G.K.; Kumar, K. Normalization: A Preprocessing Stage. arXiv, 2015; arXiv:1503.06462. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Pham, D.L.; Xu, C.; Prince, J.L. Current Methods in Medical Image Segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, K.K.D.; Kiran Kumar, G.; Swapna, K.; Datta, D.; Suman Rajest, S. A Review of Medical Image Segmentation Algorithms. EAI Endorsed Trans. Pervasive Health Technol. 2021, 7, 169184. [Google Scholar] [CrossRef]
- Müller, H.; Michoux, N.; Bandon, D.; Geissbuhler, A. A Review of Content-Based Image Retrieval Systems in Medical Applications—Clinical Benefits and Future Directions. Int. J. Med. Inform. 2004, 73, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, C.L.; Acharjya, D.P. Segmentation and Feature Extraction in Medical Imaging: A Systematic Review. Procedia Comput. Sci. 2020, 167, 26–36. [Google Scholar] [CrossRef]
- Amiriebrahimabadi, M.; Rouhi, Z.; Mansouri, N. A Comprehensive Survey of Multi-Level Thresholding Segmentation Methods for Image Processing. Arch. Comput. Methods Eng. 2024, 31, 3647–3697. [Google Scholar] [CrossRef]
- Roy, S.; kumar Jain, A.; Lal, S.; Kini, J. A Study about Color Normalization Methods for Histopathology Images. Micron 2018, 114, 42–61. [Google Scholar] [CrossRef]
- Velastegui, R.; Yang, L.; Han, D. The Importance of Color Spaces for Image Classification Using Artificial Neural Networks: A Review. In International Conference on Computational Science and Its Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 70–83. [Google Scholar] [CrossRef]
- Armi, L.; Fekri-Ershad, S. Texture Image Analysis and Texture Classification Methods—A Review. arXiv 2019, arXiv:1904.06554. [Google Scholar]
- Kaur, N.; Nazir, N.; Manik, A. Review of Local Binary Pattern Based Texture Feature Extraction. In Proceedings of the 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 3–4 September 2021. [Google Scholar] [CrossRef]
- Ghalati, M.K.; Nunes, A.; Ferreira, H.; Serranho, P.; Bernardes, R. Texture Analysis and Its Applications in Biomedical Imaging: A Survey. IEEE Rev. Biomed. Eng. 2022, 15, 222–246. [Google Scholar] [CrossRef]
- Naheed, N.; Shaheen, M.; Khan, S.A.; Alawairdhi, M.; Khan, M.A. Importance of Features Selection, Attributes Selection, Challenges and Future Directions for Medical Imaging Data: A Review. C. Comput. Model. Eng. Sci. 2020, 125, 315–344. [Google Scholar] [CrossRef]
- Alhassan, A.M.; Wan Zainon, W.M.N. Review of Feature Selection, Dimensionality Reduction and Classification for Chronic Disease Diagnosis. IEEE Access 2021, 9, 87310–87317. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Oliveira, F.H.M.; Machado, A.R.P.; Andrade, A.O. On the Use of T-Distributed Stochastic Neighbor Embedding for Data Visualization and Classification of Individuals with Parkinson’s Disease. Comput. Math. Methods Med. 2018, 2018, 8019232. [Google Scholar] [CrossRef] [PubMed]
- van der Maaten, L.; Hinton, G.E. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Berghout, T.; Benbouzid, M. Fault Diagnosis in Drones via Multiverse Augmented Extreme Recurrent Expansion of Acoustic Emissions with Uncertainty Bayesian Optimisation. Machines 2024, 12, 504. [Google Scholar] [CrossRef]
- Probst, P.; Bischl, B.; Boulesteix, A.-L. Tunability: Importance of Hyperparameters of Machine Learning Algorithms. J. Mach. Learn. Res. 2018, 20, 1–32. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar] [CrossRef]
Ref. | Year | Image Processing | Dataset | Learning Tools | Advantages | Limitations |
---|---|---|---|---|---|---|
[17] | 2023 | Background Removal; Binary Image; Grayscale Conversion; Image Enhancement; Median Filter; Noise Reduction; Region-of-Interest (ROI) Extraction; RGB-to-YCbCr Conversion; Thresholding. | Palmar images [21]. | ANN; Bagging; Boosting; DT; NB; RF; Stacking; SVM; Voting. | Higher classification accuracy. | Higher variability is observed in both the tables and visual evaluations (curves and charts) in these works, particularly in achieving stable F1 scores, recall, and precision. This issue is believed to stem primarily from the lack of discussion on data imbalance. |
[18] | 2023 | A* Components; CIE L*a*b* Color Space (CIELAB); Color Characterization; Device-Independent Digital Representation; Image Extraction; Pearson Correlation Index; Red Components (a* > 0); ROI Conversion; Standard Deviation Value. | Eye conjunctival pallor [22]. | VGG16; ResNet50; DenseNet121; Vision Transformer (ViT); ConvNeXtBase. | ||
[19] | 2023 | Augmented Dataset; CIE L*a*b* Color Space (CIELAB); Extracted Images; Flipping; Pre-processing; Region-of-Interest (ROI) Segmentation; Rotation; Translation. | Palmar images [21]. | CNN; Decision Tree; k-NN; Naive Bayes; SVM. | ||
[20] | 2023 | Augmentation; CIE L*a*b* Color Space; Extraction; ROI Extraction; Segmentation; Triangle Thresholding Algorithm. | Palmar images [21]; Eye conjunctival pallor [22]; Fingernails image dataset [23]. | NB; CNN; SVM; k-NN; DT. |
Feature | Mean | Standard Deviation | Min | Max | Categories |
---|---|---|---|---|---|
Hemoglobin level | 10.35 | 2.25 | 3.1 | 15 | - |
Age (months) | 31.58 | 16.78 | 6 | 60 | - |
Severity | - | - | - | - | Mild (20.28%), Moderate (32.68%), Non-Anemic (40.28%), Severe (6.76%) |
Gender | - | - | - | - | Female (43.10%), Male (56.90%) |
Hospital | - | - | - | - | Ahmadiyya Muslim Hospital (18.03%), Bolgatanga Regional Hospital (13.38%), Ejusu Government Hospital (5.77%), Holy Family Hospital (1.13%), Kintampo Municipal Hospital (8.45%), Komfo Anokye Teaching Hospital (18.87%), Manhyia District Hospital (6.06%), Nkawie-Toase Government Hospital (12.11%), SDA Hospital (2.11%), Sunyani Municipal Hospital (14.08%) |
Hyperparameter | Range | Type |
---|---|---|
Number of hidden units | [10, 200] | Integer |
Maximum epochs | [10, 1000] | Integer |
Mini-batch size | [16, 250] | Integer |
Initial learning rate | [0.0001, 0.1] | Real |
Gradient threshold | [0.1, 1] | Real |
L2 regularization | [0.0001, 0.1] | Real |
Dropout rate | [0, 0.5] | Real |
Recurrent dropout rate | [0, 0.5] | Real |
State activation function | Categorical | |
Gate activation function | Categorical | |
Sequence length | [10, 100] | Integer |
Training | Testing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | Dataset | Accuracy | 2.2646 | Recall | F1 Score | Time (s) | Accuracy | Precision | Recall | F1 Score |
LSTM | Eye | 0.9977 | 12.9116 | 0.9971 | 0.9976 | 2.2646 | 0.9965 | 0.9971 | 0.9956 | 0.9963 |
RexNet | Eye | 0.9977 | - | 0.9971 | 0.9976 | 12.9116 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
[20] * | Eye | - | - | - | - | - | 0.9845 | 0.9764 | 0.9184 | 0.9764 |
[18] | Eye | - | 4.1522 | - | - | - | 0.8479 | 0.852 | 0.8300 | 0.837 |
LSTM | Fingernails | 1.0000 | 144.4086 | 1.0000 | 1.0000 | 4.1522 | 0.9748 | 0.9771 | 0.9735 | 0.9746 |
RexNet | Fingernails | 1.0000 | - | 1.0000 | 1.0000 | 144.4086 | 0.9958 | 0.9957 | 0.9960 | 0.9958 |
[20] * | Fingernails | - | 1.9917 | - | - | - | 0.9833 | 0.9764 | 0.9744 | 0.9754 |
LSTM | Palm | 0.9945 | 10.3257 | 0.9942 | 0.9945 | 1.9917 | 0.9918 | 0.9910 | 0.9926 | 0.9917 |
RexNet | Palm | 0.9973 | - | 0.9971 | 0.9973 | 10.3257 | 0.9918 | 0.9913 | 0.9924 | 0.9918 |
[20] * | Palm | - | - | - | - | - | 0.9912 | 0.9979 | 0.9998 | 0.9989 |
[19] ** | Palm | - | Time (s) | - | - | - | 0.9996 | 0.9979 | 0.9998 | 0.9997 |
Dataset | Palmar Images | Eye Conjunctival | Fingernails | |||
---|---|---|---|---|---|---|
Hyperparameter | RexNet | LSTM | RexNet | LSTM | RexNet | LSTM |
Number of hidden units | 61 | 185 | 109 | 64 | 59 | 152 |
Maximum epochs | 19 | 47 | 48 | 195 | 17 | 185 |
Mini-batch size | 163 | 40 | 89 | 152 | 161 | 58 |
Initial learning rate | 0.0655 | 0.0128 | 0.0575 | 0.0755 | 0.0553 | 0.0969 |
Gradient threshold | 0.9329 | 0.7475 | 0.3729 | 0.2756 | 0.8394 | 0.1089 |
L2 regularization | 0.0226 | 0.0479 | 0.0051 | 0.0171 | 0.0382 | 0.0451 |
Dropout rate | 0.1560 | 0.4716 | 0.4555 | 0.3064 | 0.2094 | 0.0548 |
Recurrent dropout rate | 0.0550 | 0.4238 | 0.0629 | 0.1392 | 0.2459 | 0.2703 |
State activation function | tanh | tanh | soft sign | tanh | soft sign | soft sign |
Gate activation function | sigmoid | sigmoid | hard sigmoid | sigmoid | sigmoid | hard sigmoid |
Sequence length | 80 | 41 | 15 | 92 | 12 | 67 |
Dataset | Algorithm | Trainable Weights |
---|---|---|
Eye | LSTM | 5698 |
Eye | RexNet | 21,802 |
Fingernails | LSTM | 29,642 |
Fingernails | RexNet | 12,451 |
Palm | LSTM | 42,552 |
Palm | RexNet | 17,875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berghout, T. Joint Image Processing with Learning-Driven Data Representation and Model Behavior for Non-Intrusive Anemia Diagnosis in Pediatric Patients. J. Imaging 2024, 10, 245. https://doi.org/10.3390/jimaging10100245
Berghout T. Joint Image Processing with Learning-Driven Data Representation and Model Behavior for Non-Intrusive Anemia Diagnosis in Pediatric Patients. Journal of Imaging. 2024; 10(10):245. https://doi.org/10.3390/jimaging10100245
Chicago/Turabian StyleBerghout, Tarek. 2024. "Joint Image Processing with Learning-Driven Data Representation and Model Behavior for Non-Intrusive Anemia Diagnosis in Pediatric Patients" Journal of Imaging 10, no. 10: 245. https://doi.org/10.3390/jimaging10100245
APA StyleBerghout, T. (2024). Joint Image Processing with Learning-Driven Data Representation and Model Behavior for Non-Intrusive Anemia Diagnosis in Pediatric Patients. Journal of Imaging, 10(10), 245. https://doi.org/10.3390/jimaging10100245