Circular Economy in Practice: A Literature Review and Case Study of Phosphogypsum Use in Cement
Abstract
:1. Practice of Circular Economy in the Gypsum Industry
2. Burdens of Phosphogypsum in the Circular Economy
- Dihydrate gypsum, CaSO4∙2H2O;
- Hemihydrate gypsum, CaSO4∙0.5H2O;
- Anhydrous gypsum (anhydrite), CaSO4;
3. Current State of the Art in Phosphogypsum Research
3.1. Application of Phosphogypsum as a Hemihydrate Gypsum Binder
3.2. Pressed Phosphogypsum Building Blocks
3.3. Phosphogypsum-Based Biocomposites
3.3.1. Phosphogypsum-Based Hempcrete
3.3.2. Phosphogypsum and Wood Fiber Waste Composites
3.4. Ternary System Binders with Phosphogypsum
4. Life Cycle Assessment
5. Closing the Loop of Phosphogypsum—Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WRAP and the Circular Economy | WRAP. Available online: https://wrap.org.uk/taking-action/climate-change/circular-economy (accessed on 9 February 2024).
- Upadhyay, A.; Laing, T.; Kumar, V.; Dora, M. Exploring Barriers and Drivers to the Implementation of Circular Economy Practices in the Mining Industry. Resour. Policy 2021, 72, 102037. [Google Scholar] [CrossRef]
- Ojeda-Pereira, I.; Campos-Medina, F. International Trends in Mining Tailings Publications: A Descriptive Bibliometric Study. Resour. Policy 2021, 74, 102272. [Google Scholar] [CrossRef]
- The European Gypsum Industry—Eurogypsum. Available online: https://eurogypsum.org/about-eurogypsum/the-european-gypsum-industry/ (accessed on 9 February 2024).
- European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship; SMEs. Study on the Critical Raw Materials for the EU 2023—Final Report; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Pacheco-Torgal, F. Introduction to the Recycling of Construction and Demolition Waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 1–6. ISBN 9780857096906. [Google Scholar]
- Yang, K.; Xu, Q.; Townsend, T.G.; Chadik, P.; Bitton, G.; Booth, M. Hydrogen Sulfide Generation in Simulated Construction and Demolition Debris Landfills: Impact of Waste Composition. J. Air Waste Manag. Assoc. 2006, 56, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- European Commission LIFE 3.0—LIFE Project Public Page. Available online: https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=4191 (accessed on 4 April 2022).
- Jiménez-Rivero, A.; García-Navarro, J. Best Practices for the Management of End-of-Life Gypsum in a Circular Economy. J. Clean. Prod. 2017, 167, 1335–1344. [Google Scholar] [CrossRef]
- Gypsum Recycling International Profile. Available online: https://www.environmental-expert.com/companies/gypsum-recycling-international-29016 (accessed on 16 February 2021).
- Suárez, S.; Roca, X.; Gasso, S. Product-Specific Life Cycle Assessment of Recycled Gypsum as a Replacement for Natural Gypsum in Ordinary Portland Cement: Application to the Spanish Context. J. Clean. Prod. 2016, 117, 150–159. [Google Scholar] [CrossRef]
- Haneklaus, N.; Barbossa, S.; Basallote, M.D.; Bertau, M.; Bilal, E.; Chajduk, E.; Chernysh, Y.; Chubur, V.; Cruz, J.; Dziarczykowski, K.; et al. Closing the Upcoming EU Gypsum Gap with Phosphogypsum. Resour. Conserv. Recycl. 2022, 182, 106328. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Xue, M.; Duan, X.; Feng, C.; Zhu, J. Efficient Precipitation of Soluble Phosphorus Impurities in the Recycling of Phosphogypsum to Produce Hemihydrate Gypsum. J. Clean. Prod. 2023, 396, 136455. [Google Scholar] [CrossRef]
- Liu, S.; Ouyang, J.; Ren, J. Mechanism of Calcination Modification of Phosphogypsum and Its Effect on the Hydration Properties of Phosphogypsum-Based Supersulfated Cement. Constr. Build. Mater. 2020, 243, 118226. [Google Scholar] [CrossRef]
- Qin, X.; Cao, Y.; Guan, H.; Hu, Q.; Liu, Z.; Xu, J.; Hu, B.; Zhang, Z.; Luo, R. Resource Utilization and Development of Phosphogypsum-Based Materials in Civil Engineering. J. Clean. Prod. 2023, 387, 135858. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, X.; Dong, W.; Fu, Q.; Ao, X.; Chen, Q. Gradient Removal of Si and P Impurities from Phosphogypsum and Preparation of Anhydrous Calcium Sulfate. J. Environ. Chem. Eng. 2023, 11, 110312. [Google Scholar] [CrossRef]
- Akfas, F.; Elghali, A.; Aboulaich, A.; Munoz, M.; Benzaazoua, M.; Bodinier, J.L. Exploring the Potential Reuse of Phosphogypsum: A Waste or a Resource? Sci. Total Environ. 2024, 908, 168196. [Google Scholar] [CrossRef] [PubMed]
- Roszczynialski, W.; Gawlicki, M.; Nocuń-Wczelik, W. Production and Use of By-Product Gypsum in the Construction Industry. Waste Mater. Used Concr. Manuf. 1996, 53–141. [Google Scholar] [CrossRef]
- Abdelhadi, M.; Abdelhadi, N.; El-Hasan, T.; Hadi, N.A. Optimization of Phosphogypsum By-Production Using Orthophosphoric Acid as Leaching Solvent with DifferentTemperatures and Leaching Time Periods. Earth Sci. Res. 2018, 7, p28. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, Z.; Zhang, Z.; Wu, L.; Liao, S.; Zhao, Z. Effects of Particle Shaping on the Performance of Phosphorus Building Gypsum. Case Stud. Constr. Mater. 2023, 19, e02520. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Yu, B. Effect of Modified Phosphogypsum on the Hydration Properties of the Phosphogypsum-Based Supersulfated Cement. Constr. Build. Mater. 2019, 214, 9–16. [Google Scholar] [CrossRef]
- Wu, F.; Liu, S.; Qu, G.; Chen, B.; Zhao, C.; Liu, L.; Li, J.; Ren, Y. Highly Targeted Solidification Behavior of Hazardous Components in Phosphogypsum. Chem. Eng. J. Adv. 2022, 9, 100227. [Google Scholar] [CrossRef]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental Impact and Management of Phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, J.; Zhao, Y. Investigation on the Hydration of Hemihydrate Phosphogypsum after Post Treatment. Constr. Build. Mater. 2019, 229, 116864. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Luo, T. Reuse of Phosphogypsum as Hemihydrate Gypsum: The Negative Effect and Content Control of H3PO4. Resour. Conserv. Recycl. 2021, 174, 105830. [Google Scholar] [CrossRef]
- Nizevičienė, D.; Vaičiukynienė, D.; Michalik, B.; Bonczyk, M.; Vaitkevičius, V.; Jusas, V. The Treatment of Phosphogypsum with Zeolite to Use It in Binding Material. Constr. Build. Mater. 2018, 180, 134–142. [Google Scholar] [CrossRef]
- Singh, M. Role of Phosphogypsum Impurities on Strength and Microstructure of Selenite Plaster. Constr. Build. Mater. 2005, 19, 480–486. [Google Scholar] [CrossRef]
- Singh, M. Treating Waste Phosphogypsum for Cement and Plaster Manufacture. Cem. Concr. Res. 2002, 32, 1033–1038. [Google Scholar] [CrossRef]
- Singh, M.; Garg, M.; Verma, C.L.; Handa, S.K.; Kumar, R. An Improved Process for the Purification of Phosphogypsum. Constr. Build. Mater. 1996, 10, 597–600. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Z.; Cheng, Y.; Liu, Y.; Quan, S. On Pretreatment Experimental Study of Yunnan Phosphorus Building Gypsum. Adv. Mat. Res. 2014, 1025–1026, 837–841. [Google Scholar] [CrossRef]
- Liu, S.; Fang, P.; Ren, J.; Li, S. Application of Lime Neutralised Phosphogypsum in Supersulfated Cement. J. Clean. Prod. 2020, 272, 122660. [Google Scholar] [CrossRef]
- Kaziliunas, A.; Leskeviciene, V.; Vektaris, B.; Valancius, Z. The Study of Neutralization of the Dihydrate Phosphogypsum Impurities. Ceram. Silik. 2006, 50, 178–184. [Google Scholar]
- Ölmez, H.; Erdem, E. The Effects of Phosphogypsum on the Setting and Mechanical Properties of Portland Cement and Trass Cement. Cem. Concr. Res. 1989, 19, 377–384. [Google Scholar] [CrossRef]
- Liu, D.S.; Wang, C.Q.; Mei, X.D.; Zhang, C. An Effective Treatment Method for Phosphogypsum. Environ. Sci. Pollut. Res. 2019, 26, 30533–30539. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, J.; Liu, C.; Zhao, Y. Effect of Neutralization on the Setting and Hardening Characters of Hemihydrate Phosphogypsum Plaster. Constr. Build. Mater. 2018, 190, 53–64. [Google Scholar] [CrossRef]
- Nizevičienė, D.; Vaičiukynienė, D.; Vaitkevičius, V.; Rudžionis, Z. Effects of Waste Fluid Catalytic Cracking on the Properties of Semi-Hydrate Phosphogypsum. J. Clean. Prod. 2016, 137, 150–156. [Google Scholar] [CrossRef]
- Bouargane, B.; Laaboubi, K.; Biyoune, M.G.; Bakiz, B.; Atbir, A. Effective and Innovative Procedures to Use Phosphogypsum Waste in Different Application Domains: Review of the Environmental, Economic Challenges and Life Cycle Assessment. J. Mater. Cycles Waste Manag. 2023, 25, 1288–1308. [Google Scholar] [CrossRef]
- Oumnih, S.; Bekkouch, N.; Gharibi, E.K.; Fagel, N.; Elhamouti, K.; El Ouahabi, M. Phosphogypsum Waste as Additives to Lime Stabilization of Bentonite. Sustain. Environ. Res. 2019, 29, 35. [Google Scholar] [CrossRef]
- Bituh, T.; Petrinec, B.; Skoko, B.; Babic, D.; Raseta, D. Phosphogypsum and Its Potential Use in Croatia: Challenges and Opportunities Fosfogips i Njegovo Potencijalno Koristenje u Republici Hrvatskoj Izazovi i Prilike. Arch. Ind. Hyg. Toxicol. 2021, 72, 93–100. [Google Scholar] [CrossRef]
- Gabsi, H.; Tallou, A.; Aziz, F.; Boukchina, R.; Karbout, N.; Caceres, L.A.; García-Tenorio, R.; Boudabbous, K.; Moussa, M. Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy. Sustainability 2023, 15, 4769. [Google Scholar] [CrossRef]
- Outbakat, M.B.; El Mejahed, K.; El Gharous, M.; El Omari, K.; Beniaich, A. Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils. Sustainability 2022, 14, 13087. [Google Scholar] [CrossRef]
- Majdoubi, H.; Makhlouf, R.; Haddaji, Y.; Nadi, M.; Mansouri, S.; Semllal, N.; Oumam, M.; Manoun, B.; Alami, J.; Hannache, H.; et al. Valorization of Phosphogypsum Waste through Acid Geopolymer Technology: Synthesis, Characterization, and Environmental Assessment. Constr. Build. Mater. 2023, 371, 130710. [Google Scholar] [CrossRef]
- Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D.G.; Bard, F.; Laborde, M.; Caspar, J.P.; Guilhot, B.; Iatan, E.L.; et al. Phosphogypsum Circular Economy Considerations: A Critical Review from More than 65 Storage Sites Worldwide. J. Clean. Prod. 2023, 414, 137561. [Google Scholar] [CrossRef]
- Tsioka, M.; Voudrias, E.A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Clean. Prod. 2020, 266, 121386. [Google Scholar] [CrossRef]
- Bumanis, G.; Zorica, J.; Bajare, D.; Korjakins, A. Technological Properties of Phosphogypsum Binder Obtained from Fertilizer Production Waste. Energy Procedia 2018, 147, 301–308. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, H.; Shu, Z.; Wang, Y.; Yan, C. Utilization of Waste Phosphogypsum to Prepare Non-Fired Bricks by a Novel Hydration-Recrystallization Process. Constr. Build. Mater. 2012, 34, 114–119. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, D.; Shu, Z.; Li, T.; Chen, Y.; Wang, Y. A Novel Two-Step Hydration Process of Preparing Cement-Free Non-Fired Bricks from Waste Phosphogypsum. Constr. Build. Mater. 2014, 73, 222–228. [Google Scholar] [CrossRef]
- Villalón Fornés, I.; Doroševas, V.; Vaičiukynienė, D.; Nizevičienė, D. The Investigation of Phosphogypsum Specimens Processed by Press-Forming Method. Waste Biomass Valorization 2021, 12, 1539–1551. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Zhao, Y.; Shu, Z.; Wang, Y.; Zhang, Y.; Shen, X. Preparation of Paper-Free and Fiber-Free Plasterboard with High Strength Using Phosphogypsum. Constr. Build. Mater. 2020, 243, 118091. [Google Scholar] [CrossRef]
- Bumanis, G.; Irbe, I.; Sinka, M.; Bajare, D. Biodeterioration of Sustainable Hemp Shive Biocomposite Based on Gypsum and Phosphogypsum. J. Nat. Fibers 2021, 19, 10550–10563. [Google Scholar] [CrossRef]
- Bumanis, G.; Andzs, M.; Sinka, M.; Bajare, D. Fire Resistance of Phosphogypsum- and Hemp-Based Bio-Aggregate Composite with Variable Amount of Binder. J. Compos. Sci. 2023, 7, 118. [Google Scholar] [CrossRef]
- Guna, V.; Yadav, C.; Maithri, B.R.; Ilangovan, M.; Touchaleaume, F.; Saulnier, B.; Grohens, Y.; Reddy, N. Wool and Coir Fiber Reinforced Gypsum Ceiling Tiles with Enhanced Stability and Acoustic and Thermal Resistance. J. Build. Eng. 2021, 41, 102433. [Google Scholar] [CrossRef]
- Fantilli, A.P.; Jóźwiak-Niedźwiedzka, D.; Denis, P. Bio-Fibres as a Reinforcement of Gypsum Composites. Materials 2021, 14, 4830. [Google Scholar] [CrossRef]
- Kaya, A.İ.; Yalcin, Ö.Ü.; Turker, Y. Physical, Mechanical and Thermal Properties of Red Pine Wood-Gypsum Particleboard. Bilge Int. J. Sci. Technol. Res. 2021, 5, 139–145. [Google Scholar] [CrossRef]
- de Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. Lightweight Recycled Gypsum with Residues of Expanded Polystyrene and Cellulose Fiber to Improve Thermal Properties of Gypsum. Mater. Constr. 2021, 71, e242. [Google Scholar] [CrossRef]
- Álvarez, M.; Ferrández, D.; Morón, C.; Atanes-sánchez, E. Characterization of a New Lightened Gypsum-Based Material Reinforced with Fibers. Materials 2021, 14, 1203. [Google Scholar] [CrossRef]
- Suárez, F.; Felipe-Sesé, L.; Díaz, F.A.; Gálvez, J.C.; Alberti, M.G. On the Fracture Behaviour of Fibre-Reinforced Gypsum Using Micro and Macro Polymer Fibres. Constr. Build. Mater. 2020, 244, 118347. [Google Scholar] [CrossRef]
- Sair, S.; Mandili, B.; Taqi, M.; El Bouari, A. Development of a New Eco-Friendly Composite Material Based on Gypsum Reinforced with a Mixture of Cork Fibre and Cardboard Waste for Building Thermal Insulation. Compos. Commun. 2019, 16, 20–24. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Feng, P. A Comprehensive Overview of Fibre-Reinforced Gypsum-Based Composites (FRGCs) in the Construction Field. Compos. B Eng. 2021, 205, 108540. [Google Scholar] [CrossRef]
- Pedreño-Rojas, M.A.; Morales-Conde, M.J.; Pérez-Gálvez, F.; Rodríguez-Liñán, C. Eco-Efficient Acoustic and Thermal Conditioning Using False Ceiling Plates Made from Plaster and Wood Waste. J. Clean. Prod. 2017, 166, 690–705. [Google Scholar] [CrossRef]
- Cherki, A.B.; Remy, B.; Khabbazi, A.; Jannot, Y.; Baillis, D. Experimental Thermal Properties Characterization of Insulating Cork–Gypsum Composite. Constr. Build. Mater. 2014, 54, 202–209. [Google Scholar] [CrossRef]
- Villalón Fornés, I.; Vaičiukynienė, D.; Nizevičienė, D.; Tamošaitis, G.; Pupeikis, D. The Improvement of the Thermal and Acoustic Insulation Properties of Phosphogypsum Specimens by Adding Waste Wood Fibre. Constr. Build. Mater. 2022, 331, 127341. [Google Scholar] [CrossRef]
- Bumanis, G.; Zorica, J.; Bajare, D. Properties of Foamed Lightweight High-Performance Phosphogypsum-Based Ternary System Binder. Appl. Sci. 2020, 10, 6222. [Google Scholar] [CrossRef]
- Villalón Fornés, I.; Vaičiukynienė, D.; Nizevičienė, D.; Doroševas, V.; Dvořák, K. A Method to Prepare a High-Strength Building Material from Press-Formed Phosphogypsum Purified with Waste Zeolite. J. Build. Eng. 2021, 34, 101919. [Google Scholar] [CrossRef]
- Dahmen, J.; Kim, J.; Ouellet-Plamondon, C.M. Life Cycle Assessment of Emergent Masonry Blocks. J. Clean. Prod. 2018, 171, 1622–1637. [Google Scholar] [CrossRef]
- Sinka, M.; Spurina, E.; Korjakins, A.; Bajare, D. Hempcrete—CO2 Neutral Wall Solutions for 3D Printing. Environ. Clim. Technol. 2022, 26, 742–753. [Google Scholar] [CrossRef]
- Valdez-Castro, L.; Bejarano-Nieto, A.C.; Mendoza-Serna, R.; Pavón-Duarte, A.; Morales-Flórez, V.; Esquivias, L. Capture of CO2 through Phosphogypsum and Lye Residues from the Olive Industry. J. CO2 Util. 2023, 72, 102504. [Google Scholar] [CrossRef]
Composition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Material | PG | CG | Lime | CEM I | Sand | Gravel | Metakaolin | Hemp Shives | H2O | Ref |
CG biocomposite | - | 300 | - | - | - | - | - | 120 | 290 | [51] |
Lime biocomposite | - | - | 300 | - | - | - | - | 120 | 270 | [66] |
PG biocomposites | 300 | - | - | - | - | - | 120 | 290 | [51] | |
PG ternary binder | 55 | - | - | 22.5 | - | - | 22.5 | - | 34 | [63] |
CG ternary binder | - | 55 | - | 22.5 | - | - | 22.5 | - | 34 | [63] |
CEM I | - | - | - | 100 | - | - | - | - | 29 | Ecoinvent |
PG pressed blocks | 100 | - | - | - | - | - | 16 | [64] | ||
CG pressed blocks | - | 100 | - | - | - | - | - | - | 16 | [64] |
Pressed concrete blocks | - | - | - | 17 | 91 | 37 | - | - | 9.3 | [65] |
Materials | PG Content in Material, % | CO2 Reduction, kg CO2eq | PG CO2 Reduction Efficiency, kgCO2/kgPG |
---|---|---|---|
PG biocomposite | 71 | 0.61 | 0.82 |
PG ternary binder | 55 | 0.56 | 1.01 |
PG pressed concrete blocks | 100 | 0.11 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumanis, G.; Vaičiukynienė, D.; Tambovceva, T.; Puzule, L.; Sinka, M.; Nizevičienė, D.; Fornés, I.V.; Bajare, D. Circular Economy in Practice: A Literature Review and Case Study of Phosphogypsum Use in Cement. Recycling 2024, 9, 63. https://doi.org/10.3390/recycling9040063
Bumanis G, Vaičiukynienė D, Tambovceva T, Puzule L, Sinka M, Nizevičienė D, Fornés IV, Bajare D. Circular Economy in Practice: A Literature Review and Case Study of Phosphogypsum Use in Cement. Recycling. 2024; 9(4):63. https://doi.org/10.3390/recycling9040063
Chicago/Turabian StyleBumanis, Girts, Danutė Vaičiukynienė, Tatjana Tambovceva, Liga Puzule, Maris Sinka, Dalia Nizevičienė, Ignacio Villalón Fornés, and Diana Bajare. 2024. "Circular Economy in Practice: A Literature Review and Case Study of Phosphogypsum Use in Cement" Recycling 9, no. 4: 63. https://doi.org/10.3390/recycling9040063
APA StyleBumanis, G., Vaičiukynienė, D., Tambovceva, T., Puzule, L., Sinka, M., Nizevičienė, D., Fornés, I. V., & Bajare, D. (2024). Circular Economy in Practice: A Literature Review and Case Study of Phosphogypsum Use in Cement. Recycling, 9(4), 63. https://doi.org/10.3390/recycling9040063