A New Recycling Method through Mushroom Cultivation Using Food Waste: Optimization of Mushroom Bed Medium Using Food Waste and Agricultural Use of Spent Mushroom Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agar Culture for Spawn
2.2. Preparation of Spawn Substrates
2.3. Preparation of Mushroom Cultivation Substrate
2.4. Mushrooms Cultivation Process
2.5. Plant Material and Experimental Setup
2.6. Statistical Analysis
3. Results
3.1. Effect of Rice Hull Spawn on P. ostreatus and P. citrinopileatus
3.2. Effects of Different Agro/Food Waste Substrates on the Yield of P. ostreatus and P. citrinopileatus
3.3. Effects of SMS of P. ostreatus and P. citrinopileatus on the Growth of B. rapa
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Brien, P.; Kral-O’Brien, K.; Hatfield, J.L. Agronomic approach to understanding climate change and food security. Agron. J. 2021, 113, 4616–4626. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations, How to Feed the World in 2050. 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 9 July 2024).
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Kjeldsen, P.; Monni, S.; Faaij, A.; Gao, Q.; et al. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. J. A Sustain. Circ. Econ. 2008, 26, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Consumer Affairs Agency (CAA), Government of Japan. 2016. Available online: https://www.caa.go.jp/policies/policy/consumer_policy/information/food_loss/conference/pdf/adjustments_index_10_161012_0007.pdf (accessed on 9 July 2024). (In Japanese).
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed. Res. Int. 2017, 19, 2370927. [Google Scholar] [CrossRef] [PubMed]
- Ohno, A.; Ano, T.; Shoda, M. Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Process Biochem. 1996, 31, 801–806. [Google Scholar] [CrossRef]
- Martínez-Carrera, D.; Aguilar, A.; Martínez, W.; Bonilla, M.; Morales, P. Commercial production and marketing of edible mushrooms cultivated on coffee pulp in Mexico. In Coffee Biotechnology and Quality; Sera, T., Soccol, C., Pandey, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Neterhlands, 2000; Chapter 45; pp. 471–488. ISBN 0-7923-6582-8. [Google Scholar]
- Jo, E.-Y.; Cheon, J.-L.; Ahn, J.-H. Effect of food waste compost on the antler-type fruiting body yield of Ganoderma lucidum. Mycobiology 2013, 41, 42–46. [Google Scholar] [CrossRef]
- Mohd Hanafi, F.H.; Rezania, S.; Mat Taib, S.; Md Din, M.F.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. J. Mater. Cycles. Waste 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Chiu, S.; Ching, M.; Fong, K.; Moore, D. Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol. Res. 1998, 102, 1553–1562. [Google Scholar] [CrossRef]
- Sendi, H.; Mohamed, M.T.M.; Anwar, M.P.; Saud, H.M. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleraceae var. Alboglabra) production. Sci. World J. 2013, 2013, 258562. [Google Scholar] [CrossRef]
- Williams, B.; McMullan, J.; McCahey, S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol. 2001, 79, 227–230. [Google Scholar] [CrossRef]
- Ahlawat, O.P.; Manikandan, K.; Sagar, M.P.; Rai, D.; Vijai, B. Effect of composted button mushroom spent substrate on yield, quality and disease incidence of Pea (Pisum sativum). Mushroom Res. 2011, 20, 87–94. [Google Scholar]
- Li, B.; Qiao, M.; Lu, F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 2012, 28, 231–252. [Google Scholar] [CrossRef]
- Quintana, G.; Gerbino, E.; Gómez-Zavaglia, A. Okara: A nutritionally valuable by-product able to stabilize Lactobacillus plantarum during freeze-drying, spray-drying, and storage. Front. Microbiol. 2017, 8, 641. [Google Scholar] [CrossRef] [PubMed]
- Vong, W.C.; Lim, X.Y.; Liu, S.-Q. Biotransformation with cellulase, hemicellulase and Yarrowia lipolytica boosts health benefits of okara. Appl. Microbiol. Biotechnol. 2017, 101, 7129–7140. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Ma, C.-Y.; Liu, W.-S.; Kwok, K.; Kwok, F. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 1996, 29, 799–805. [Google Scholar] [CrossRef]
- Vong, W.C.; Liu, S.-Q. Biovalorisation of okara (soybean residue) for food and nutrition. Trends Food Sci. Technol. 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Global Food Losses and Food Waste–Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Parmar, I.; Rupasinghe, H.V. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation. Bioresour. Technol. 2013, 130, 613–620. [Google Scholar] [CrossRef]
- Pfaltzgraff, L.A.; De Bruyn, M.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food waste biomass: A resource for high-value chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Cazón, P.; Silva, A.S. Natural pigments from food wastes: New approaches for the extraction and encapsulation. Curr. Opin. Green Sustain. Chem. 2024, 47, 100929. [Google Scholar] [CrossRef]
- Monsiváis-Alonso, R.; Mansouri, S.S.; Román-Martínez, A. Life cycle assessment of intensified processes towards circular economy: Omega-3 production from waste fish oil. Chem. Eng. Process. Process. Intensif. 2020, 158, 108171. [Google Scholar] [CrossRef]
- Carrasco-Cabrera, C.P.; Bell, T.L.; Kertesz, M.A. Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Appl. Microbiol. Biotechnol. 2019, 103, 5831–5841. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liang, J.; Wang, Y.; Sun, F.; Tao, H.; Xu, Q.; Zhang, L.; Zhang, Z.; Ho, C.; Wan, X. Tea waste: An effective and economic substrate for oyster mushroom cultivation. J. Sci. Food Agric. 2016, 96, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Michigami, N. Effect of Spent Mushroom Substrates to Vegetable Fields (In Japanese), Shimane Prefecture Agricultural Experiment Station 2003; p. 104. Available online: https://www.pref.shimane.lg.jp/industry/norin/gijutsu/nougyo_tech/kenyui/kenkyu_seika/tayori/104-4.data/104-4.pdf (accessed on 9 July 2024).
- Mane, V.P.; Patil, S.S.; Syed, A.A.; Baig, M.M.V. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) singer. J. Zhejiang Univ. B 2007, 8, 745–751. [Google Scholar] [CrossRef]
- Zang, T.T.; Hu, X.J.; Gu, H.D.; Yu, J.; Qu, J.J. Biosorption of Cu2+ by Auricularia auricula spent substrate and its mechanism. Acta Sci. Circumst. 2014, 34, 1421–1428. [Google Scholar]
Substrates No. | Cultivation Substrates (%) |
---|---|
T1 | Barley tea residue 22: coffee residue 30: food waste 0: rice hull 20: rice bran 25: okara 0: CaCO3 3 |
T2 | Barley tea residue 13.5: coffee residue 13.5: food waste 25: rice hull 20: rice bran 25: okara 0: CaCO3 3 |
T3 | Barley tea residue 22: coffee residue 10: food waste 20: rice hull 20: rice bran 25: okara 0: CaCO3 3 |
T4 | Barley tea residue 22: coffee residue 30: food waste 0: rice hull 20: rice bran 0: okara 25: CaCO3 3 |
T5 | Barley tea residue 13.5: coffee residue 13.5: food waste 25: rice hull 20: rice bran (RB) 0: okara 25: CaCO3 3 |
T6 | Barley tea residue 22: coffee residue 10: food waste 20: rice hull 20: rice bran 0: okara 25: CaCO3 3 |
T7 | Sawdust 77: rice bran 0: okara 20: CaCO3 3 |
T8 | Sawdust 77: rice bran 20: okara 0: CaCO3 3 |
Pleorutus citrinopileatus | ||||||
Leaf Number | Plant Heights (cm) | Root (cm) | L. Stump (cm) | L. Length (cm) | L. Width (cm) | |
Only soil | 5.6 ± 3.61 a | 27 ± 8.72 a | 15 ± 0.58 a | 5.4 ± 1.94 a | 7.5 ± 0.73 a | 5.8 ± 0.60 a |
CK | 7 ± 6.11 ab | 30 ± 5.00 a | 10.5 ± 0.00 a | 8.7 ± 1.30 bc | 12.3 ± 1.73 bc | 9.6 ± 1.41 bc |
24 g SMS | 6.6 ± 9.23 ab | 37.3 ± 7.21 ab | 20 ± 0.58 ab | 6.8 ± 0.60 a | 9.3 ± 1.66 ab | 7.8 ± 1.45 b |
12 g SMS/12 g okara | 9 ± 7.51 c | 52.5 ± 7.55 c | 27.5 ± 0.00 c | 10.4 ± 1.24 c | 15.9 ± 2.45 d | 12.5 ± 1.94 d |
Pleorutus ostreatus | ||||||
Leaf Number | Plant Heights (cm) | Root (cm) | L. Stump (cm) | L. Length (cm) | L. Width (cm) | |
Only soil | 6.3 ± 0.58 a | 36.0 ± 1.16 a | 24.8 ± 1.15 c | 5.1 ± 1.10 a | 7.16 ± 0.82 a | 5.13 ± 0.27 a |
CK | 8.3 ± 0.58 ab | 46.3 ± 4.88 bc | 27.9 ± 3.91 c | 8.3 ± 1.50 bc | 10.9 ± 0.62 a | 8.9 ± 0.28 c |
24 g SMS | 6.7 ± 1.15 b | 41.8 ± 1.19 abc | 26.7 ± 1.21 c | 6.6 ± 1.01 ab | 9.11 ± 0.40 a | 7.3 ± 0.43 b |
12 g SMS/12 g okara | 10 ± 1.00 c | 49.2 ± 2.69 c | 25.6 ± 2.23 c | 8.9 ± 0.75 bc | 14.6 ± 0.48 a | 11.4 ± 0.44 d |
P. ostreatus | P. citrinopileatus | ||||||||
---|---|---|---|---|---|---|---|---|---|
Only Soil | CK | 24 g SMS | 12 g SMS + 12 g Okara | Only Soil | CK | 24 g SMS | 12 g SMS + 12 g Okara | ||
pH (H2O) | 6.8 | 5.9 | 7.1 | 6.4 | 6.8 | 5.8 | 7.3 | 6.6 | |
EC | mS/cm | 0.03 | 0.29 | 0.1 | 0.17 | 0.03 | 0.35 | 0.14 | 0.15 |
Exchange Ca | mg/100 g | 274 | 285 | 358 | 304 | 275 | 282 | 391 | 317 |
Exchange Mg | mg/100 g | 52.1 | 52.1 | 68.8 | 64 | 50.7 | 53.3 | 74.8 | 65.9 |
Exchange K | mg/100 g | 20.9 | 26.7 | 34.5 | 42.2 | 23.4 | 29 | 44.7 | 46.4 |
Ca/Mg | 3.79 | 3.93 | 3.74 | 3.42 | 3.9 | 3.81 | 3.75 | 3.46 | |
Mg/K | 5.83 | 4.56 | 4.66 | 3.55 | 5.05 | 4.29 | 3.91 | 3.32 | |
Ca/K | 22.1 | 17.9 | 17.4 | 12.1 | 19.7 | 16.3 | 14.7 | 11.5 | |
CEC | meq/100 g | 16.8 | 16.8 | 19.1 | 18.7 | 17.6 | 17.4 | 19.5 | 18.8 |
Base saturation | % | 76.1 | 79.2 | 88.7 | 79.6 | 72.8 | 76.5 | 95.3 | 83 |
Troug-P2O5 | mg/100 g | 17.4 | 26.9 | 36 | 21.3 | 16.5 | 23.8 | 51.2 | 30.1 |
Ammonia nitrogen | mg/100 g | 0.32 | 3.03 | 0.38 | 0.84 | 0.62 | 3.78 | 0.56 | 0.67 |
Nitrate nitrogen | mg/100 g | 0.27 | 0.69 | 1.33 | 7.43 | 0.29 | 0.84 | 0.52 | 3.64 |
Humus | % | 2.43 | 2.46 | 2.47 | 2.47 | 2.41 | 2.45 | 2.35 | 2.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barua, B.S.; Nigaki, A.; Kataoka, R. A New Recycling Method through Mushroom Cultivation Using Food Waste: Optimization of Mushroom Bed Medium Using Food Waste and Agricultural Use of Spent Mushroom Substrates. Recycling 2024, 9, 58. https://doi.org/10.3390/recycling9040058
Barua BS, Nigaki A, Kataoka R. A New Recycling Method through Mushroom Cultivation Using Food Waste: Optimization of Mushroom Bed Medium Using Food Waste and Agricultural Use of Spent Mushroom Substrates. Recycling. 2024; 9(4):58. https://doi.org/10.3390/recycling9040058
Chicago/Turabian StyleBarua, Babla Shingha, Ami Nigaki, and Ryota Kataoka. 2024. "A New Recycling Method through Mushroom Cultivation Using Food Waste: Optimization of Mushroom Bed Medium Using Food Waste and Agricultural Use of Spent Mushroom Substrates" Recycling 9, no. 4: 58. https://doi.org/10.3390/recycling9040058
APA StyleBarua, B. S., Nigaki, A., & Kataoka, R. (2024). A New Recycling Method through Mushroom Cultivation Using Food Waste: Optimization of Mushroom Bed Medium Using Food Waste and Agricultural Use of Spent Mushroom Substrates. Recycling, 9(4), 58. https://doi.org/10.3390/recycling9040058