An Innovative Magnetic Density Separation Process for Sorting Granular Solid Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of the Innovative MDS
2.2. Particle Sliding Phenomenon
2.2.1. Experimental Demonstration
2.2.2. Numerical Demonstration
2.3. MDS Experiments on Solid Waste Sorting
3. Results and Discussion
3.1. MDS Sorting of Shredded PCBAs
3.2. MDS Sorting of Shredded Wires
3.3. A Pilot Scale Facility of the Innovative MDS
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sujatha, K.; Radha, R.C. Technologies for segregation and management of solid waste: A review. In Proceedings of the 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Pudukkottai, India, 24–26 February 2016; pp. 1–4. [Google Scholar]
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef]
- Anastassakis, G.N. Solid Waste Separation and Processing: Principles and Equipment. In Handbook of Environmental Engineering; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 627–671. [Google Scholar]
- Lu, W.; Chen, J. Computer vision for solid waste sorting: A critical review of academic research. Waste Manag. 2022, 142, 29–43. [Google Scholar] [CrossRef]
- Tanısalı, E.; Özer, M.; Burat, F. Precious metals recovery from waste printed circuit boards by gravity separation and leaching. Miner. Process. Extr. Metall. Rev. 2021, 42, 24–37. [Google Scholar] [CrossRef]
- Rem, P.C.; Berkhout, S.P.M. Magnetic Density Separation Device and Method. US10974255B2, 13 April 2021. [Google Scholar]
- Papell, S.S. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles. US3215572A, 2 November 1965. [Google Scholar]
- Scherer, C.; Figueiredo Neto, A.M. Ferrofluids: Properties and applications. Braz. J. Phys. 2005, 35, 718–727. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Fluidmagnetic buoyancy. AIAA J. 1966, 4, 1751–1758. [Google Scholar] [CrossRef]
- Svoboda, J.; Fujita, T. Recent developments in magnetic methods of material separation. Miner. Eng. 2003, 16, 785–792. [Google Scholar] [CrossRef]
- Shimoiizaka, J.; Nakatsuka, K.; Fujita, T.; Kounosu, A. Sink-float separators using permanent magnets and water based magnetic fluid. IEEE Trans. Magn. 1980, 16, 368–371. [Google Scholar] [CrossRef]
- Odenbach, S. Ferrofluids-magnetisable liquids and their application in density separation. Magn. Electr. Sep. 1970, 9, 074963. [Google Scholar] [CrossRef]
- Mir, L.; Simard, C.; Grana, D. Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation. In Proceedings of the 3rd Urban Technology Conference and Technical Display, Boston, MA, USA, 25–28 September 1973; p. 959. [Google Scholar]
- Muchova, L.; Bakker, E.; Rem, P. Precious metals in municipal solid waste incineration bottom ash. Water Air Soil Pollut. Focus 2009, 9, 107–116. [Google Scholar] [CrossRef]
- Khalafalla, S.E.; Reimers, G.W. Separating nonferrous metals in incinerator residue using magnetic fluids. Sep. Sci. 1973, 8, 161–178. [Google Scholar] [CrossRef]
- Hu, B.; Giacometti, L.; Di Maio, F.; Rem, P.C. Recycling of WEEE by magnetic density separation. In Proceedings of the Sixth International Conference on Waste Management and Technology, Suzhou, China, 30 August–1 September 2011. [Google Scholar]
- Serranti, S.; Luciani, V.; Bonifazi, G.; Hu, B.; Rem, P.C. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag. 2015, 35, 12–20. [Google Scholar] [CrossRef]
- Hu, B. Magnetic Density Separation of Polyolefin Wastes. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2014. [Google Scholar]
- Fujita, T.; Mori, S.; Mamiya, M.; Shimoiizaka, J. An improved sink-float testing apparatus for coal preparation using water based magnetic fluid. In Proceedings of the 11th International Coal Preparation Congress, Tokyo, Japan, 22–25 October 1990; pp. 109–114. [Google Scholar]
- Murariu, V.; Svoboda, J.; Sergeant, P. The modelling of the separation process in a ferrohydrostatic separator. Miner. Eng. 2005, 18, 449–457. [Google Scholar] [CrossRef]
- Weijmans, F.; Bakker, E.; Rem, P. Magnetic density separation of diamonds from gangue. Environ. Eng. Manag. J. 2009, 8, 981. [Google Scholar]
- Svobada, J. Separation in magnetic fluids: Time to meet the technological needs. In Proceedings of the MINPREX 2000 Congress, Melbourne, Australia, 11–13 September 2000. [Google Scholar]
- De Koning, J.R.A.; Bakker, E.J.; Rem, P.C. Sorting of vegetable seeds by magnetic density separation in comparison with liquid density separation. Seed Sci. Technol. 2011, 39, 593–603. [Google Scholar] [CrossRef]
- Bakker, E.J.; Rem, P.; Berkhout, A.J.; Hartmann, L. Turning magnetic density separation into green business using the cyclic innovation model. Open Waste Manag. J. 2010, 3, 99–116. [Google Scholar] [CrossRef]
- Polinder, H.; Rem, P.C. Magnet and Device for Magnetic Density Separation. WO2014158016A1, 5 December 2017. [Google Scholar]
- Glazer, P.J.; Paida, S.R.; Rem, P.C. Ferrofluid. US2022/0351887A1, 3 November 2022. [Google Scholar]
- Thijs, L.C.; Kuerten, J.G.M.; Zeegers, J.C.H.; Tajfirooz, S. Magnetic density separation of particles in honeycomb-generated wake turbulence. Chem. Eng. Sci. 2023, 278, 118930. [Google Scholar] [CrossRef]
- Dellaert, R.A. Turbulence and Particle Behavior in a Magnetic Density Separation Application. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2021. [Google Scholar]
- Houzeaux, G.; Samaniego, C.; Calmet, H.; Aubry, R.; Vázquez, M.; Rem, P. Simulation of magnetic fluid applied to plastic sorting. Open Waste Manag. J. 2010, 3, 127–138. [Google Scholar] [CrossRef]
- Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S. Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. Int. J. 2012, 12, 140–152. [Google Scholar] [CrossRef]
- Phengsaart, T.; Srichonphaisan, P.; Kertbundit, C.; Soonthornwiphat, N.; Sinthugoot, S.; Phumkokrux, N.; Juntarasakul, O.; Maneeintr, K.; Numprasanthai, A.; Park, I. Conventional and recent advances in gravity separation technologies for coal cleaning: A systematic and critical review. Heliyon 2023, 9, e13083. [Google Scholar] [CrossRef]
- Falconer, A. Gravity separation: Old technique/new methods. Phys. Sep. Sci. Eng. 2003, 12, 31–48. [Google Scholar] [CrossRef]
- Ning, C.; Lin, C.S.K.; Hui, D.C.W.; McKay, G. Waste printed circuit board (PCB) recycling techniques. Chem. Chem. Technol. Waste Valorization 2018, 43, 21–56. [Google Scholar]
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef]
- Díaz, S.; Ortega, Z.; McCourt, M.; Kearns, M.P.; Benítez, A.N. Recycling of polymeric fraction of cable waste by rotational moulding. Waste Manag. 2018, 76, 199–206. [Google Scholar] [CrossRef]
- de Araújo, M.C.P.B.; Chaves, A.P.; Espinosa, D.C.R.; Tenório, J.A.S. Electronic scraps–Recovering of valuable materials from parallel wire cables. Waste Manag. 2008, 28, 2177–2182. [Google Scholar] [CrossRef]
- Di Maio, F.; Rem, P.C. Method of Separating Scrap Particles, and Particle Separation Assembly (Separation of Materials Heavier than Water). NL2031882, 24 November 2023. [Google Scholar]
Parameter | Value |
---|---|
Density of Particle 1, | 8500 kg/m3 |
Density of Particle 2, | 2700 kg/m3 |
Particle volume, | 1 cm3 |
Angle of magnet surface to basin bottom, | 12° |
Fluid density, | 1032 kg/m3 |
Fluid magnetization, | 3368 A/m |
Magnetic field strength at magnet surface, | 0.63 T |
Magnet pole size, | 0.189 m |
Particle Stream | Mass | Au Content | Ag Content | Cu Content |
---|---|---|---|---|
Original shredded PCBAs | 9683.9 g | 18.56 ppm | 612.73 ppm | 9.55% |
MDS feedstock | 7479.9 g | 20.30 ppm | 682.89 ppm | 10.24% |
Stream 1 | 2654.5 g | 30.07 ppm | 1369.33 ppm | 29.57% |
Stream 2 | 1710.3 g | 42.05 ppm | 674.35 ppm | 17.53% |
Stream 3 | 3115.4 g | 0.03 ppm | 102.63 ppm | 0.00% |
Particle Stream | Mass (g) | Cu (wt%) | Al (wt%) | Cu + Al (wt%) |
---|---|---|---|---|
MDS feedstock | 488.2 | 1.02 | 1.13 | 2.15 |
Stream 1 | 8.9 | 41.88 | 1.58 | 43.46 |
Stream 2 | 7.6 | 1.38 | 0.62 | 1.99 |
Stream 3 | 65.1 | 0.41 | 0.53 | 0.94 |
Stream 4 | 111.0 | 0.31 | 2.95 | 3.25 |
Stream 5 | 219.0 | 0.12 | 0.72 | 0.84 |
Stream 6 | 22.4 | 0.25 | 0.29 | 0.54 |
Float | 54.2 | 0.40 | 0.11 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Rem, P.; Di Maio, F.; van Beek, M.; Tomás, G. An Innovative Magnetic Density Separation Process for Sorting Granular Solid Wastes. Recycling 2024, 9, 48. https://doi.org/10.3390/recycling9030048
Wang L, Rem P, Di Maio F, van Beek M, Tomás G. An Innovative Magnetic Density Separation Process for Sorting Granular Solid Wastes. Recycling. 2024; 9(3):48. https://doi.org/10.3390/recycling9030048
Chicago/Turabian StyleWang, Lin, Peter Rem, Francesco Di Maio, Max van Beek, and Gonçalo Tomás. 2024. "An Innovative Magnetic Density Separation Process for Sorting Granular Solid Wastes" Recycling 9, no. 3: 48. https://doi.org/10.3390/recycling9030048
APA StyleWang, L., Rem, P., Di Maio, F., van Beek, M., & Tomás, G. (2024). An Innovative Magnetic Density Separation Process for Sorting Granular Solid Wastes. Recycling, 9(3), 48. https://doi.org/10.3390/recycling9030048