A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide
Abstract
:1. Introduction
2. Materials
3. Methodology
3.1. Mix Design
3.1.1. Mix Design for Geopolymer Mortar
3.1.2. Mix Design for Geopolymer Concrete
3.2. Preparation of Alkaline Activators (AA)
3.3. Preparation of Geopolymer Mortar Specimens and Testing Methods
3.4. Preparation of Geopolymer Concrete Specimens and Testing Methods
4. Results
4.1. Initial Setting Time of Fresh Geopolymer Mortar
4.2. Density of Geopolymer Mortar
4.3. Results of Compressive Strength of Geopolymer Mortar
4.4. Slump Test Results of Geopolymer Concrete
4.5. Density of Geopolymer Concrete
4.6. Compressive Strength Results at Various Curing Times
4.7. Tensile Splitting Strength Results at 28 Days Curing
5. Discussion
6. Conclusions
- The study determined that a W/B ratio of 0.50 with an initial setting time of 39 min provides a balanced mix of workability and structural performance for geopolymer concrete.
- The research demonstrated that as the alkali/precursor (A/P) ratio increases, the consistency of geopolymer concrete generally decreases, as evidenced by slump tests. It is important to note that all geopolymer mixtures, except for GPC3 with an A/P ratio of 0.6, exhibited suitable workability results, with slump values between 50 and 40 mm.
- Compressive strength increased with increasing A/P ratio up to a certain point (between 0.2 and 0.4) and then started to decrease. GPC2, with an A/P ratio of 0.4, consistently achieved the highest compressive strength at all tested time intervals among geopolymer mixes. However, all geopolymer concrete mixes exhibited significantly lower strength than the control mix (100 PC).
- Tensile splitting strength generally increased with increasing the A/P ratio up to a certain point (within an A/P ratio range of 0.2 to 0.6) and then began to decrease. GPC2 and GPC3, with A/P ratios of 0.4 and 0.6, respectively, consistently exhibited the highest tensile splitting strength at 28 days of curing among geopolymer mixes, although significantly lower than the control mix (100 PC).
- Geopolymer concrete mixtures with an A/P ratio of 0.4 and a W/B ratio of 0.50 demonstrated favourable properties, including good workability, competitive compressive strength, and reasonable density. This mix design can be recommended for practical applications.
- Future research should focus on enhancing the mechanical properties of geopolymer concrete by varying the concentration of the alternative alkaline activator, exploring different SH:SSA ratios, and partially replacing GGBS with other precursor materials to develop a sustainable, high-performance mixture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2020; pp. 1–671. Available online: https://www.researchgate.net/publication/265076752_Geopolymer_Chemistry_and_Applications (accessed on 14 July 2023).
- Simão, L.; Fernandes, E.; Hotza, D.; Ribeiro, M.J.; Montedo, O.R.K.; Raupp-Pereira, F. Controlling efflorescence in geopolymers: A new approach. Case Stud. Constr. Mater. 2021, 15, e00740. [Google Scholar] [CrossRef]
- Skariah Thomas, B.; Yang, J.; Bahurudeen, A.; Chinnu, S.N.; Abdalla, J.A.; Hawileh, R.A.; Hamada, H.M. Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Clean. Mater. 2022, 3, 100056. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Alkali Activated Materials: State-of-the-Art Report (RILEM TC 224-AAM); Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Assi, L.N.; Carter, K.; Deaver, E.; Ziehl, P. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 2020, 263, 121477. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0959652620315249 (accessed on 6 May 2023). [CrossRef]
- Kamseu, E.; Beleuk à Moungam, L.M.; Cannio, M.; Billong, N.; Chaysuwan, D.; Melo, U.C.; Leonelli, C. Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J. Clean. Prod. 2017, 142, 3050–3060. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0959652616317954 (accessed on 8 May 2023). [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Ranjbar, N. Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. J. Build. Eng. 2016, 6, 252–261. [Google Scholar] [CrossRef]
- BS EN 197-1:2011; Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements. BSI Standard Limited: London, UK, 2011.
- BS EN 15167-1:2006; Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout. Part 1: Definitions, Specifications and Conformity Criteria. BSI Standard Limited: London, UK, 2006.
- Adeleke, B.O.; Kinuthia, J.M.; Oti, J.; Ebailila, M. Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solution. Materials 2023, 16, 2400. [Google Scholar] [CrossRef] [PubMed]
- Billong, N.; Kinuthia, J.; Oti, J.; Melo, U.C. Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): Effect on tensile strength and microstructure. Constr. Build. Mater. 2018, 189, 307–313. [Google Scholar] [CrossRef]
- BS EN 12620:2002+A1:2008; Aggregates for Concrete. BSI Standard Limited: London, UK, 2008.
- Liu, Y.; Shi, C.; Zhang, Z.; Li, N. An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 2019, 144, 297–309. [Google Scholar] [CrossRef]
- BS EN 196-3:2016; Methods of Testing Cement. Part 3: Determination of Setting Times and Soundness. BSI Standard Limited: London, UK, 2016.
- BS EN 1015-2:1999; Methods of Test for Mortar for Masonry. Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. BSI Standard Limited: London, UK, 1999.
- BS EN 12350-2:2019; Testing Fresh Concrete. Part 1: Slump Test. BSI Standard Limited: London, UK, 2019.
- BS EN 206:2013+A2:2021; Concrete. Specification, Performance, Production and Conformity. BSI Standard Limited: London, UK, 2021.
- BS EN 12390-2:2019; Testing Hardened Concrete. Part 2: Making and Curing Specimens for Strength Tests. BSI Standard Limited: London, UK, 2019.
- BS EN 12390-3:2019; Testing Hardened Concrete. Part 3: Compressive Strength of Test Specimens. BSI Standard Limited: London, UK, 2019.
- BS EN 12390-6:2009; Testing Hardened Concrete. Part 6: Tensile Splitting Strength of Test Specimens. BSI Standard Limited: London, UK, 2009.
- Oti, J.; Kinuthia, J.; Adeleke, B. The Strength Characterisation of Concrete Made with Alumina Waste Filler. Sustainability 2020, 12, 10235. [Google Scholar] [CrossRef]
- Kurhade, S.D.; Patankar, S.V. Effect of water-to-binder (W/B) ratio and various zones of river sand on properties of geopolymer concrete. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Abdulrahman, H.; Muhamad, R.; Visintin, P.; Azim Shukri, A. Mechanical properties and bond stress-slip behaviour of fly ash geopolymer concrete. Constr. Build. Mater. 2022, 327, 126909. [Google Scholar] [CrossRef]
- Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 2009, 168, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Biricik, H.; Kırgız, M.S.; de Sousa Galdino, A.; Kenai, S.; Mirza, J.; Kinuthia, J.; Ashteyat, A.; Khitab, A.; Khatib, J. Activation of slag through a combination of NaOH/NaS alkali for transforming it into geopolymer slag binder mortar—Assessment the effects of two different Blaine fines and three different curing conditions. J. Mater. Res. Technol. 2021, 14, 1569–1584. [Google Scholar] [CrossRef]
Oxide | Composition (wt%) | ||
---|---|---|---|
OPC | GGBS | RHA | |
CaO | 61.49 | 37.99 | 0.56 |
MgO | 3.54 | 8.78 | 0.30 |
SiO2 | 18.84 | 35.54 | 93.20 |
Al2O3 | 4.77 | 11.46 | 0.58 |
Na2O | 0.02 | 0.37 | 0.08 |
P2O5 | 0.1 | 0.02 | - |
Fe2O3 | 2.87 | 0.42 | 0.20 |
Mn2O3 | 0.05 | 0.43 | - |
K2O | 0.57 | 0.43 | 3.04 |
TiO2 | 0.26 | 0.70 | - |
V2O5 | 0.06 | 0.04 | - |
BaO | 0.05 | 0.09 | - |
SO3 | 3.12 | 1.54 | - |
Loss on ignition | 4.3 | 2.00 | 1.20 |
Properties | OPC | GGBS | RHA |
---|---|---|---|
Insoluble residue | 0.5 | 0.3 | 0.42 |
Bulk density (kg/m3) | 1400 | 1200 | 781 |
Specific gravity (g/cm3) | 3.15 | 2.9 | 2.14 |
Glass content | - | 90 | - |
Blaine fineness (m2 /kg) | 365 | 450 | 332 |
Alkalinity value (pH) | 13.41 | 10.4 | 7.2 |
Colour | Grey | Off-white | Brownish-white |
Physical form | Fine powder | Fine powder | Fine powder |
Property | Fine Aggregates (Sand) | Coarse Aggregates | |
---|---|---|---|
10 mm | 20 mm | ||
Uniformity coefficient (CU) | 0.11 | 3.3 | 1.3 |
Curvature coefficient (CC) | 1.75 | 1.5 | 7.5 |
Flakiness index (%) | - | 30–35 | 23 |
Elongation index (%) | - | 17–22 | 12 |
Shape index (%) | - | 12 | 7 |
Impact value | - | 23 | 15 |
Fineness modulus (mm) | 1.54 | 4 | - |
Uncompacted bulk density (g/cm3) | 1.5 | 1.35 | 2.57 |
Predried particle density (g/cm3) | 2.6 | 2.69 | - |
Water absorption (%) | 21 | 2 | 1.1 |
Mix Code | W/B Ratio | A/P Ratio | Precursor (kg) | Alkaline Activator (SS:SH = 1:1) | Fine Agg. (kg) | Water (kg) | |
---|---|---|---|---|---|---|---|
GGBS | SSA (kg) | SH (kg) | |||||
GPM1 | 0.40 | 0.2 | 550 | 0.064 | 0.046 | 1.980 | 0.195 |
GPM2 | 0.42 | 0.2 | 550 | 0.064 | 0.046 | 1.980 | 0.208 |
GPM3 | 0.44 | 0.2 | 550 | 0.064 | 0.046 | 1.980 | 0.221 |
GPM4 | 0.46 | 0.2 | 550 | 0.064 | 0.046 | 1.980 | 0.234 |
GPM5 | 0.48 | 0.2 | 550 | 0.064 | 0.046 | 1.980 | 0.247 |
GPM6 | 0.50 | 0.2 | 550 | 0.064 | 0.046 | 1.980 | 0.260 |
Mix Code | W/B Ratio | A/P Ratio | Precursor (kg) | Alkaline Activator (SS:SH = 1:1) | Fine Agg. (kg) | Water (kg) | |
---|---|---|---|---|---|---|---|
GGBS | SSA (kg) | SH (kg) | |||||
GPM1 | 0.40 | 0.2 | 96 | 0.011 | 0.008 | 0.345 | 0.034 |
GPM2 | 0.42 | 0.2 | 96 | 0.011 | 0.008 | 0.345 | 0.036 |
GPM3 | 0.44 | 0.2 | 96 | 0.011 | 0.008 | 0.345 | 0.039 |
GPM4 | 0.46 | 0.2 | 96 | 0.011 | 0.008 | 0.345 | 0.041 |
GPM5 | 0.48 | 0.2 | 96 | 0.011 | 0.008 | 0.345 | 0.043 |
GPM6 | 0.50 | 0.2 | 96 | 0.011 | 0.008 | 0.345 | 0.046 |
Mix Code | Elaborated Abbreviation | W/B Ratio | OPC (kg) | Precursor (kg) | A/P Ratio | Alkaline Activator (SS:SH = 1:1) | Fine Agg. (kg) | Coarse Agg. (kg) | Water (kg) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
GGBS | SSA (kg) | SH (kg) | 10 mm | 20 mm | |||||||
100 PC | OPC (Control) | 0.55 | 4.8 | 9.6 | 4.8 | 9.6 | 2.64 | ||||
GPC1 | GPC1-AP0.2 | 0.5 | 4.0 | 0.2 | 0.464 | 0.335 | 9.6 | 4.8 | 9.6 | 1.90 | |
GPC2 | GPC2-AP0.4 | 0.5 | 3.4 | 0.4 | 0.813 | 0.588 | 9.6 | 4.8 | 9.6 | 1.52 | |
GPC3 | GPC3-AP0.6 | 0.5 | 3 | 0.6 | 1.045 | 0.755 | 9.6 | 4.8 | 9.6 | 1.26 | |
GPC4 | GPC4-AP0.8 | 0.5 | 2.7 | 0.8 | 1.277 | 0.923 | 9.6 | 4.8 | 9.6 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oti, J.; Adeleke, B.O.; Mudiyanselage, P.R.; Kinuthia, J. A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide. Recycling 2024, 9, 23. https://doi.org/10.3390/recycling9020023
Oti J, Adeleke BO, Mudiyanselage PR, Kinuthia J. A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide. Recycling. 2024; 9(2):23. https://doi.org/10.3390/recycling9020023
Chicago/Turabian StyleOti, Jonathan, Blessing O. Adeleke, Prageeth R. Mudiyanselage, and John Kinuthia. 2024. "A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide" Recycling 9, no. 2: 23. https://doi.org/10.3390/recycling9020023
APA StyleOti, J., Adeleke, B. O., Mudiyanselage, P. R., & Kinuthia, J. (2024). A Comprehensive Performance Evaluation of GGBS-Based Geopolymer Concrete Activated by a Rice Husk Ash-Synthesised Sodium Silicate Solution and Sodium Hydroxide. Recycling, 9(2), 23. https://doi.org/10.3390/recycling9020023