Recent Recycling Innovations to Facilitate Sustainable Packaging Materials: A Review
Abstract
:1. Introduction
2. Role of Recycling in Sustainable Packaging
3. Sustainable Packaging through Recycling
4. Legal and Systemic Solution for Sustainable Packaging
5. Drawbacks and Limitations of Recycling
5.1. Plastic Recycling
5.2. Glass Recycling
5.3. Paper and Paperboard Recycling
- Higher energy consumption;
- Lower potential energy recovery;
- Higher weight per bag.
6. Future Trends and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang, Y.-C.; Lee, G.; Kwon, Y.; Lim, J.-H.; Jeong, J.-H. Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Res Conser Recycl. 2020, 158, 104798. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R.; Alam, T. An overview of paper and paper based food packaging materials: Health safety and environmental concerns. J. Food Sci. Technol. 2019, 56, 4391–4403. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.Y.; Arif, Z.U. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Pac. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Muratore, F.; Barbosa, S.E.; Martini, R.E. Development of bioactive paper packaging for grain-based food products. Food Pac. Shelf Life 2019, 20, 100317. [Google Scholar] [CrossRef]
- Triantafyllou, V.I.; Akrida-Demertzi, K.; Demertzis, P.G. Migration studies from recycled paper packaging materials: Development of an analytical method for rapid testing. Anal. Chimica Acta 2002, 467, 253–260. [Google Scholar] [CrossRef]
- Franz, R.; Welle, F. Recycling packaging materials. In Novel Food Packaging Techniques; Woodhead Publishing Ltd.: Cambridge, UK, 2003; pp. 497–518. [Google Scholar]
- Dainelli, D. Sealed Air Corporation, Milan, Italy. In Global Legislation for Food Contact Materials; Elsevier: Amsterdam, The Netherlands, 2015; p. 183. [Google Scholar]
- Boparai, K.S.; Singh, R. Recyclability of Packaging Materials for Domestic Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 144–148. [Google Scholar]
- Statista Research Department. Global Plastic Production 1950–2021. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 1 September 2023).
- Cooper, T.A. Developments in plastic materials and recycling systems for packaging food, beverages and other fast-moving consumer goods. In Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods; Woodhead Publishing: Cambridge, UK, 2013; pp. 58–107. [Google Scholar]
- Castelvetro, V.; Corti, A.; Bianchi, S.; Giacomelli, G.; Manariti, A.; Vinciguerra, V. Microplastics in fish meal: Contamination level analyzed by polymer type, including polyester (PET), polyolefins, and polystyrene. Enviro. Pollut. 2021, 273, 115792. [Google Scholar] [CrossRef] [PubMed]
- Cushman-Roisin, B.; Cremonini, B.T. Chapter 11—Waste, packaging, and recycling. In Data, Statistics, and Useful Numbers for Environmental Sustainability; Cushman-Roisin, B., Cremonini, B.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 163–177. [Google Scholar]
- Moazzem, S.; Wang, L.; Daver, F.; Crossin, E. Environmental impact of discarded apparel landfilling and recycling. Resour. Conserv. Recycl. 2021, 166, 105338. [Google Scholar] [CrossRef]
- Velis, C. Waste Pickers in Global South: Informal Recycling Sector in a Circular Economy Era; SAGE Publications Sage UK: London, UK, 2017.
- Fuss, M.; Barros, R.T.; Poganietz, W.-R. The role of a socio-integrated recycling system in implementing a circular economy–The case of Belo Horizonte, Brazil. Waste Manag. 2021, 121, 215–225. [Google Scholar] [CrossRef]
- Azevedo, B.D.; Scavarda, L.F.; Caiado, R.G.G. Urban solid waste management in developing countries from the sustainable supply chain management perspective: A case study of Brazil’s largest slum. J. Clean. Prod. 2019, 233, 1377–1386. [Google Scholar] [CrossRef]
- Johnson, J.; Reck, B.K.; Wang, T.; Graedel, T.E. The energy benefit of stainless steel recycling. Energy Policy. 2008, 36, 181–192. [Google Scholar] [CrossRef]
- Ayodele, T.; Alao, M.; Ogunjuyigbe, A. Recyclable resources from municipal solid waste: Assessment of its energy, economic and environmental benefits in Nigeria. Res. Conser. Recyc. 2018, 134, 165–173. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E.; Patel, M.K. Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- Menikpura, S.N.; Santo, A.; Hotta, Y. Assessing the climate co-benefits from Waste Electrical and Electronic Equipment (WEEE) recycling in Japan. J. Clean. Prod. 2014, 74, 183–190. [Google Scholar] [CrossRef]
- Ram, V.; Kishore, K.C.; Kalidindi, S.N. Environmental benefits of construction and demolition debris recycling: Evidence from an Indian case study using life cycle assessment. J. Clean. Prod. 2020, 255, 120258. [Google Scholar] [CrossRef]
- Blengini, G.A.; Garbarino, E. Resources and waste management in Turin (Italy): The role of recycled aggregates in the sustainable supply mix. J. Clean. Prod. 2010, 18, 1021–1030. [Google Scholar] [CrossRef]
- Borghi, G.; Pantini, S.; Rigamonti, L. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). J. Clean. Prod. 2018, 184, 815–825. [Google Scholar] [CrossRef]
- Maheshwari, S.; Deswal, S. Role of Waste Management at Landfills in Sustainable Waste Management. Int. J. Emerg. Technol. 2017, 8, 324–328. [Google Scholar]
- Utekar, S.; Suriya, V.K.; More, N.; Rao, A. Comprehensive study of recycling of thermosetting polymer composites–Driving force, challenges and methods. Compos. Part B Eng. 2021, 207, 108596. [Google Scholar] [CrossRef]
- Nkwachukwu, O.I.; Chima, C.H.; Ikenna, A.O.; Albert, L. Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. Int. J. Ind. Chem. 2013, 4, 1–13. [Google Scholar] [CrossRef]
- Partridge, C.; Medda, F. Opportunities for chemical recycling to benefit from waste policy changes in the United Kingdom. Res. Conser. Recyc. X 2019, 3, 100011. [Google Scholar] [CrossRef]
- Wong, S.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sust. Ener. Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Marsh, G. Reclaiming value from post-use carbon composite. Reinf. Plast. 2008, 52, 36–39. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling technologies for thermoset composite materials—Current status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J.; Walker, G.S.; Wong, K.H.; Rudd, C.D. Surface characterisation of carbon fibre recycled using fluidised bed. Appl. Surf. Sci. 2008, 254, 2588–2593. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- EPA, U. Facts and Figures about Materials, Waste and Recycling; EPA, Environmental Protection Agency: Washington, DC, USA, 2019; p. 12. [Google Scholar]
- Wang, Q.; Zhang, W.; Tseng, C.P.M.L.; Sun, Y.; Zhang, Y. Intention in use recyclable express packaging in consumers’ behavior: An empirical study. Res. Conser. Recyc. 2021, 164, 105115. [Google Scholar] [CrossRef]
- de Oliveira, W.Q.; de Azeredo, H.M.C.; Neri-Numa, I.A.; Pastore, G.M. Food packaging wastes amid the COVID-19 pandemic: Trends and challenges. Trend. Food Sci. Technol. 2021, 116, 1195–1199. [Google Scholar] [CrossRef]
- Hakovirta, M.; Hakovirta, J. Transmittance and Survival of SARS-CoV-2 in Global Trade: The Role of Supply Chain and Packaging. J. Pack. Technol. Res. 2020, 4, 261–265. [Google Scholar] [CrossRef]
- Ceylan, Z.; Meral, R.; Cetinkaya, T. Relevance of SARS-CoV-2 in food safety and food hygiene: Potential preventive measures, suggestions and nanotechnological approaches. Virus Disease 2020, 31, 154–160. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Cheela, V.S.; Ranjan, V.P.; Jaglan, A.K.; Dubey, B.; Goel, S.; Bhattacharya, J. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Res. Conser. Recyc. 2020, 162, 105052. [Google Scholar] [CrossRef]
- Van Fan, Y.; Jiang, P.; Hemzal, M.; Klemeš, J.J. An update of COVID-19 influence on waste management. Sci. Total Environ. 2021, 754, 142014. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Long, R.; Chen, H.; Cheng, X. Willingness to participate in take-out packaging waste recycling: Relationship among effort level, advertising effect, subsidy and penalty. Waste Manag. 2021, 121, 141–152. [Google Scholar] [CrossRef]
- Cao, J.; Lu, B.; Chen, Y.; Zhang, X.; Zhai, G.; Zhou, G.; Jiang, B.; Schnoor, J.L. Extended producer responsibility system in China improves e-waste recycling: Government policies, enterprise, and public awareness. Rene. Sust. Ener. Rev. 2016, 62, 882–894. [Google Scholar] [CrossRef]
- Edwards, J.; Burn, S.; Crossin, E.; Othman, M. Life cycle costing of municipal food waste management systems: The effect of environmental externalities and transfer costs using local government case studies. Res. Conser. Recyc. 2018, 138, 118–129. [Google Scholar] [CrossRef]
- Chen, J.; Hua, C.; Liu, C. Considerations for better construction and demolition waste management: Identifying the decision behaviors of contractors and government departments through a game theory decision-making model. J. Clean. Prod. 2019, 212, 190–199. [Google Scholar] [CrossRef]
- Estalaki, S.M.; Abed-Elmdoust, A.; Kerachian, R. Developing environmental penalty functions for river water quality management: Application of evolutionary game theory. Environ. Earth Sci. 2015, 73, 4201–4213. [Google Scholar] [CrossRef]
- Jacobsen, L.F.; Pedersen, S.; Thøgersen, J. Drivers of and barriers to consumers’ plastic packaging waste avoidance and recycling–A systematic literature review. Waste Manag. 2022, 141, 63–78. [Google Scholar] [CrossRef]
- Lee, C.K.M.; Ng, K.K.H.; Kwong, C.K.; Tay, S.T. A system dynamics model for evaluating food waste management in Hong Kong, China. J. Mater. Cycl. Waste Manag. 2019, 21, 433–456. [Google Scholar] [CrossRef]
- Wu, Y.-G.; Chu, Z.-J.; Zhuang, J. Evaluation of optional fee structures for solid waste management in China. Waste Manag. Res. 2018, 36, 513–519. [Google Scholar] [CrossRef]
- Bor, Y.J.; Chien, Y.-L.; Hsu, E. The market-incentive recycling system for waste packaging containers in Taiwan. Environ. Sci. Policy. 2004, 7, 509–523. [Google Scholar] [CrossRef]
- Chen, C.-C.; Dai, L.; Ma, L.; Guo, R.T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 2020, 4, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-D. Biodegradability of plastics: The issues, recent advances, and future perspectives. Environ. Sci. Pollu. Res. 2021, 28, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Zarrintaj, P.; Saeb, M.R.; Jafari, S.H.; Mozafari, M. Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2020; pp. 511–537. [Google Scholar]
- Singh, A.; Sharma, P.K.; Malviya, R. Eco friendly pharmaceutical packaging material. World Appl. Sci. J. 2011, 14, 1703–1716. [Google Scholar]
- Tshifularo, C.A.; Patnaik, A. Recycling of plastics into textile raw materials and products. In Sustainable Technologies for Fashion and Textiles; Nayak, R., Ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 311–326. [Google Scholar]
- Schyns, Z.O.; Shaver, M.P. Mechanical recycling of packaging plastics: A review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of polymer-based multilayer packaging: A review. Recycling 2018, 3, 1. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Muzenda, E. Recycling situation in South Africa: A discussion. Int. J. Bio. Ecolog. Environ. Sci. 2013, 2, 79–82. [Google Scholar]
- Pereira da Costa, F.; Rodrigues da Silva Morais, C.; Rodrigues, A.M. Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite. Cera. Int. 2020, 46, 17957–17961. [Google Scholar] [CrossRef]
- Haque, M.J.; Munna, A.H.; Rahman, S.; Rahman, M.A. Fabrication and Performance Analysis of Porcelain Stoneware Tiles Incorporated with Labware Glass Cullet. Trans. Indian Ceram. Soc. 2021, 80, 64–70. [Google Scholar] [CrossRef]
- Raju, A.S.; Anand, K.; Rakesh, P. Partial replacement of Ordinary Portland cement by LCD glass powder in concrete. Mater. Today Proceed. 2021, 46, 5131–5137. [Google Scholar] [CrossRef]
- Atoyebi, O.; Gana, A.; Longe, J. Strength assessment of concrete with waste glass and bankoro (Morinda Citrifolia) as partial replacement for fine and coarse aggregate. Resul. Eng. 2020, 6, 100124. [Google Scholar] [CrossRef]
- Felisberto, R.; Santos, M.C.; Arcaro, S.; Basegio, T.M.; Bergmann, C.P. Assessment of environmental compatibility of glass–ceramic materials obtained from galvanic sludge and soda–lime glass residue. Proce. Safet. Environ. Protec. 2018, 120, 72–78. [Google Scholar] [CrossRef]
- Liang, S.-X.; Wang, X.; Zhang, W.; Liu, Y.J.; Wang, W.; Zhang, L.C. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Today. 2020, 19, 100543. [Google Scholar] [CrossRef]
- García Guerrero, J.; Rodríguez Reséndiz, J.; Rodríguez Reséndiz, H.; Álvarez-Alvarado, J.M.; Rodríguez Abreo, O. Sustainable Glass Recycling Culture-Based on Semi-Automatic Glass Bottle Cutter Prototype. Sustainability 2021, 13, 6405. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Van Fan, Y.; Tan, R.R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sust. Ener. Rev. 2020, 127, 109883. [Google Scholar] [CrossRef]
- Puente-Rueda, C.; Saénz-Nuño, M.A.; Luis-Zamora, J.; Puente-Agueda, C. Solar Energy and Reused Materials in the Recycling of Plastics. In New Materials for a Circular Economy; Garcia-Penas, A., Sharma, G., Eds.; Materials Research Forum LLC: Millersville, PA, USA, 2023; Volume 149, pp. 70–104. [Google Scholar]
- Farmer, N. The future: Global trends and analysis for the international packaging market in relation to the speed of impact of packaging innovation and likely material changes. In Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG); Woodhead Publishing: Cambridge, UK, 2013; pp. 288–312. [Google Scholar]
- The Coca-Cola Company. 2020 World without Waste Report. Available online: https://www.coca-colacompany.com/content/dam/company/us/en/reports/coca-cola-world-without-waste-report-2020.pdf (accessed on 31 August 2023).
Recycling Technique | Definition | Advantages | Disadvantages | Energy Needed (MJ/Kg) | Ref. |
---|---|---|---|---|---|
Chemical | This method involves the degradation of polymer matrix into chemicals, which can further be used as fuel or manufacture of novel polymers. |
|
| 21–91 | [29] |
Mechanical | This method includes the reduction in the size of the waste and the use to reinforce different materials. This is the only method that is adopted commercially for the processing of waste materials. |
|
| 0.1–4.8 | [25,30] |
Fluidized bed | This method functions by thermally decomposing chopped segments of the materials in silica sand bed and fluidizing it with the use of heated air of about 450–500 °C. |
|
| 5–40 | [31] |
Pyrolysis | This method leads to the degradation of materials by heating them in the absence of oxygen and converting them into simpler molecules. It is applied to plastic to break down the resin matrix into more purified gas and liquid. |
|
| 24–30 | [32] |
Waste | Scrap | ||
---|---|---|---|
Material | USD/kg | Material | USD/kg |
Plastics | 0.12–0.54 | PET | 0.12–0.47 |
Archival paper | 0.17 | Plastics | 0.06–0.09 |
Cardboard | 0.12–0.15 | Paper | 0.005–0.05 |
Glass | 0.06 | Paperboard | 0.07 |
Glass | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, I.D.; Sadiku, E.R.; Hamam, Y.; Kupolati, W.K.; Ndambuki, J.M.; Jamiru, T.; Eze, A.A.; Snyman, J. Recent Recycling Innovations to Facilitate Sustainable Packaging Materials: A Review. Recycling 2023, 8, 88. https://doi.org/10.3390/recycling8060088
Ibrahim ID, Sadiku ER, Hamam Y, Kupolati WK, Ndambuki JM, Jamiru T, Eze AA, Snyman J. Recent Recycling Innovations to Facilitate Sustainable Packaging Materials: A Review. Recycling. 2023; 8(6):88. https://doi.org/10.3390/recycling8060088
Chicago/Turabian StyleIbrahim, Idowu D., Emmanuel R. Sadiku, Yskandar Hamam, Williams K. Kupolati, Julius M. Ndambuki, Tamba Jamiru, Azunna A. Eze, and Jacques Snyman. 2023. "Recent Recycling Innovations to Facilitate Sustainable Packaging Materials: A Review" Recycling 8, no. 6: 88. https://doi.org/10.3390/recycling8060088
APA StyleIbrahim, I. D., Sadiku, E. R., Hamam, Y., Kupolati, W. K., Ndambuki, J. M., Jamiru, T., Eze, A. A., & Snyman, J. (2023). Recent Recycling Innovations to Facilitate Sustainable Packaging Materials: A Review. Recycling, 8(6), 88. https://doi.org/10.3390/recycling8060088