X-ray Fluorescence Analysis of Waste Sm-Co Magnets: A Rational Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Results of XRF-FPM
2.2. Calibration Curves
2.3. LOD and LOQ
2.4. The Results of XRF Analysis with Calibration Curves
3. Materials and Methods
3.1. Apparatus
- determined elements—from Na to U;
- spectral resolution—crystal diffraction;
- X-ray optical scheme—according to Johansson;
- X-ray tube anode voltage—40 kV;
- X-ray tube capacity—up to 160 W;
- X-ray tube current—from 0.5 to 3.5 mA;
- X-ray tube anode—Pd;
3.2. Waste Sm-Co Magnets Samples
3.3. Sample Preparation
- platform vibration frequency: 1500 vibrations/min;
- platform vibration amplitude: 3.5 mm;
- headset material (bowl, balls): wolfram carbide;
- headset hardness: 1180–1280 HV.
3.4. X-ray Fluorescence Analysis Using the Method of FPM
3.4.1. Selection of Conditions for Conducting XRF-FPM
3.4.2. The XRF-FPM Experiment
3.5. Preparation of Calibration Samples
3.6. Quantitative XRF Analysis Using Calibration Curves
3.7. Limits of Detection (LOD) and Limits of Quantification (LOQ)
3.8. Comparative ICP-OES Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strnat, K.; Hoffer, G.; Olson, J.; Ostertag, W.; Becker, J.J. A family of new cobalt-base permanent magnet materials. J. Appl. Phys. 1967, 38, 1001–1002. [Google Scholar] [CrossRef]
- Gutfeisch, O.; Willard, M.A.; Bruck, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Huang, A.; Cui, B.; Sutherland, J.W. Techno-Economic Assessment of a Novel SmCo Permanent Magnet Manufacturing Method. Procedia CIRP 2021, 98, 127–132. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Gerven, T.V.; Yang, Y.X.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Yi, J.H. Development of samarium–cobalt rare earth permanent magnetic materials. Rare Met. 2014, 33, 633–640. [Google Scholar] [CrossRef]
- Gong, Y.; Qiu, Z.; Liang, S.; Zheng, X.; Meng, H.; Zheng, Z.; Chen, D.; Yuan, S.; Xia, W.; Zeng, D.; et al. Strategy of preparing SmCo based films with high coercivity and remanence ratio achieved by temperature and chemical optimization. J. Rare Earths 2023. [Google Scholar] [CrossRef]
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Chen, B.; Li, L.; Zhu, S.; Zhang, W.; Gao, Z. Excellent magnetic and mechanical properties of the Sm2Co17-based magnets fabricated via microwave processing. J. Alloys Compd. 2021, 868, 159071. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, M.; Fang, Y.; Liu, Z.; Chen, H.; Guo, Z.; Li, W. Magnetic properties and microstructures of high-performance Sm2Co17 based alloy. J. Magn. Magn. Mater. 2015, 378, 214–216. [Google Scholar] [CrossRef]
- Chen, C.H.; Walmer, M.S.; Walmer, M.H.; Liu, S.; Kuhl, E.; Simon, G. Sm-2(Co, Fe, Cu, Zr)(17) magnets for use at temperature ⩾ 400 °C. J. Appl. Phys. 1998, 83, 6706–6708. [Google Scholar] [CrossRef]
- Sinha, M.K.; Pramanik, S.; Kumari, A.; Sahu, S.K.; Prasad, L.B.; Jha, M.K.; Yoo, K.; Pandey, B.D. Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Sep. Purif. Technol. 2017, 179, 1–12. [Google Scholar] [CrossRef]
- Tanaka, M.; Oki, T.; Koyama, K.; Narita, H.; Oishi, T. Chapter 255—Recycling of Rare Earths from Scrap. In Handbook on the Physics and Chemistry of Rare Earths; Jean-Claude, G.B., Vitalij, K.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 43, pp. 159–211. [Google Scholar] [CrossRef]
- Lorenz, T.; Bertau, M. Recycling of rare earth elements from SmCo5-Magnets via solid-state chlorination. J. Clean. Prod. 2020, 246, 118980. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Müller, T.; Yurramendi, L. Rare earths and the balance problem: How to deal with changing markets? J. Sustain. Metall. 2018, 8, 126–146. [Google Scholar] [CrossRef]
- Ullmann, F. Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Coey, J.M.D. Permanent magnet applications guide. J. Magn. Magn. Mater. 2002, 248, 441–456. [Google Scholar] [CrossRef]
- Xu, X.; Khoshima, S.; Karajic, M.; Balderman, J.; Markovic, K.; Scancar, J.; Rozman, K.Z. Electrochemical routes for environmentally friendly recycling of rare-earth-based (Sm–Co) permanent magnets. J. Appl. Electrochem. 2022, 52, 1081–1090. [Google Scholar] [CrossRef]
- An, S.; Li, X.; Li, W.; Ren, F.; Xu, P. Coercivity enhancement of SmCo/FeCo nanocomposite magnets by doping eutectic Sm-Zn alloy. Mater. Lett. 2021, 284, 128965. [Google Scholar] [CrossRef]
- Kuchumov, V.A.; Shoomkin, S.S. Analisys of the chemichal composition of the bearing alloy used in the production of Sm-Co-based permanent magnets. St. Petersburg Polytech. Univ. J. Eng. Sci. Technol. 2017, 23, 219–225. [Google Scholar] [CrossRef]
- Shumkin, S.S.; Prokof’ev, P.A.; Semenov, M.Y. Production of permanent magnets for magnetically hard alloys using rare-earth metals. Metallurgist 2019, 63, 462–468. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Z.; Gao, X.; Wu, H.; Zhu, C.; Cheng, W.; Ma, Y.; Chen, R.; Yan, A. Prolonged ordering process induced higher segregation of copper in 2:17 type SmCo magnets. J. Alloys Compd. 2022, 924, 166463. [Google Scholar] [CrossRef]
- Teng, Y.; Li, Y.; Xu, X.; Yue, M.; Liu, W.; Zhang, D.; Zhang, H.; Lu, Q.; Xia, W. Microstructure evolution of hot-deformed SmCo-based nanocomposites induced by thermo-mechanical processing. J. Mater. Sci. Technol. 2023, 138, 193–202. [Google Scholar] [CrossRef]
- Petrova, K.V.; Baranovskaya, V.B.; Korotkova, N.A. Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium-cobalt magnets. Arab. J. Chem. 2022, 15, 103501. [Google Scholar] [CrossRef]
- Renko, M.; Osojnik, A.; Hudnik, V. ICP emission spectrometric analysis of rare earth elements in permanent magnet alloys. Fresenius J. Anal. Chem. 1995, 351, 610–613. [Google Scholar] [CrossRef]
- Iwasaki, K.; Uchida, H. Rapid Determination of Major and Minor Elements in Rare Earth-Cobalt Magnets by Inductively Coupled Plasma Atomic Emission Spectrometry. Anal. Sci. 1986, 2, 261–264. [Google Scholar] [CrossRef]
- Orefice, M.; Audoor, H.; Li, Z.; Binnemans, K. Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Sep. Purif. Technol. 2019, 219, 281–289. [Google Scholar] [CrossRef]
- Korotkova, N.A.; Baranovskaya, V.B.; Petrova, K.V. Microwave Digestion and ICP-MS Determination of Major and Trace Elements in Waste Sm-Co Magnets. Metals 2022, 12, 1308. [Google Scholar] [CrossRef]
- Akin, H.; Emre, C.M.; Topcuoglu, T.; Kemal Ozdemir, A. Can laser welding stop corrosion of new generation magnetic attachment systems. Mater. Res. Innov. 2011, 15, 66–69. [Google Scholar] [CrossRef]
- Matthews, M.W.; Eggleston, H.C.; Pekarek, S.D.; Hilmas, G.E. Magnetically adjustable intraocular lens. J. Cataract Refract. Surg. 2003, 29, 2211–2216. [Google Scholar] [CrossRef]
- Sherman, J.; Winifred, J.M. Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix. Ann. Math. Stat. 1950, 21, 124–127. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Belonovsky, A.V.; Katzman, Y.M. Application of fundamental parameter method in X-ray fluorescence Analysis of Pulp Products in Ore Concentration. Gorn. Prom. 2021, 5, 84–88. [Google Scholar]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-ray Fluorescence Analysis; Part 5 Quantitative Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Borkhodoev, V.Y. X-ray Fluorescence Analysis of Rocks by the Method of Fundamental Parameters; SVKNII FEB RAN: Magadan, Russia, 1999; 279p. [Google Scholar]
- Coulthard, I.; Freeland, J.W.; Winarski, R.; Ederer, D.L.; Jiang, J.S.; Inomata, A.; Bader, S.D.; Callcott, T.A. Soft x-ray absorption of a buried SmCo film utilizing substrate fluorescence detection. Appl. Phys. Lett. 1999, 74, 3806–3808. [Google Scholar] [CrossRef]
- Itza-Ortiz, V.; Ederer, D.L.; Schuler, T.M.; Ruzycki, N.; Samuel Jiang, J.; Bader, S.D. Model study of soft x-ray spectroscopy techniques for observing magnetic circular dichroism in buried SmCo magnetic films. J. Appl. Phys. 2003, 93, 2002–2008. [Google Scholar] [CrossRef]
- Foltova, S.S.; Hoogerstraete, T.V.; Banerjee, D.; Binnemans, K. Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep. Purif. Technol. 2019, 210, 209–218. [Google Scholar] [CrossRef]
- Rabenberg, L.; Mishra, R.; Thomas, G. Microstructures of Precipitation Hardened SmCo Permanent Magnets; LBNL Report #: LBL-13395; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1981. [Google Scholar]
- Chen, D.K.; Luo, L.; Dai, F.L.; Liu, P.P.; Yao, Q.R.; Wang, J.; Zhou, H.Y. Phase Equilibria in Sm-Co-Ti Ternary System. J. Phase Equilib. Diffus. 2022, 43, 317–331. [Google Scholar] [CrossRef]
- Shumkin, S.S.; Sitnov, V.V.; Kamynin, A.V.; Chernyshov, B.D.; Semenov, M.Y.; Nikolaichik, V.I. Composition and Operating Properties of Hard Magnetic Materials Based on Alloys of the Sm–Co–Cu–Fe–Zr System Obtained with the Use of Recoverable Resources. Met. Sci. Heat Treat. 2022, 63, 479–485. [Google Scholar] [CrossRef]
- Cadieu, F.J.; Vander, I.; Rong, Y.; Zuneska, R.W. Glancing XRD and XRF for the study of texture development in SmCo based films sputtered onto silicon substrates. Adv. X-ray Anal. 2011, 55, 162–176. [Google Scholar]
- Gómez, E.; Cojocaru, P.; Magagnin, L.; Valles, E. Electrodeposition of Co, Sm and SmCo from a deep eutectic solvent. J. Electroanal. Chem. 2011, 658, 18–24. [Google Scholar] [CrossRef]
- Swain, N.; Mishra, S.; Acharya, M.R. Hydrometallurgical route for recovery and separation of samarium (III) and cobalt (II) from simulated waste solution using tri-n-octyl phosphine oxide—A novel pathway for synthesis of samarium and cobalt oxides nanoparticles. J. Alloys Compd. 2020, 815, 152423. [Google Scholar] [CrossRef]
- Allocca, L.; Bonavolontà, C.; Giardini, A.; Lopizzo, T.; Morone, A.; Valentino, M.; Verrastro, M.F.; Viggiano, V. Laser deposition of SmCo thin film and coating on different substrates. Phys. Scr. 2008, 78, 058114. [Google Scholar] [CrossRef]
- Allocca, L.; Gambardella, U.; Morone, A.; Valentino, M. Laser deposition of SmCo thin film on steel substrate. In Proceedings of the SPIE 6985, Fundamentals of Laser Assisted Micro- and Nanotechnologies, St. Petersburg, Russian, 24 January 2008; p. 69850. [Google Scholar] [CrossRef]
- Morone, M.V.; Annunziata, F.D.; Giugliano, R.; Chianese, A.; De Filippis, A.; Rinaldi, L.; Gambardella, U.; Franci, G.; Galdiero, M.; Morone, A. Pulsed laser ablation of magnetic nanoparticles as a novel antibacterial strategy against gram positive bacteria. Appl. Surf. Sci. Adv. 2022, 7, 100213. [Google Scholar] [CrossRef]
- Ono, K.; Kakefuda, Y.; Okuda, R.; Ishii, Y.; Kamimura, S.; Kitamura, A.; Oshima, M. Organometallic synthesis and magnetic properties of ferromagnetic Sm–Co nanoclusters. J. Appl. Phys. 2002, 91, 8480–8482. [Google Scholar] [CrossRef]
- Vander, I.; Zuneska, R.; Cadieu, F. Thickness determination of SmCo films on silicon substrates utilizing X-ray diffraction. Powder Diffr. 2010, 25, 149–153. [Google Scholar] [CrossRef]
- Mazurickij, M.I. X-ray Spectral Optics: Educational Materials for Lectures and Practical Classes/M.I. Mazurickij; Diapazon: Rostov-na-Donu, Russia, 2005; p. 91s. [Google Scholar]
- Mishin, V.V.; Shishov, I.A.; Kiselev, P.P.; Matsinkevich, E.V.; Rudnev, A.V.; Bukin, K.V. Investigation of the possibility of improving the X-ray fluorescence spectrometer analytical characteristics due to using the superfine beryllium foils. Mater. Phys. Mech. 2018, 36, 92–99. [Google Scholar] [CrossRef]
- Krivelev, D.M. Vibration Grinder. RU Patent 2018137072, 15 January 2019. [Google Scholar]
- Shirkin, L.A. X-ray fluorescent analysis of environmental objects. In Tutorial; Publishing House VLSU: Vladimir, Russia, 2009; 65p. [Google Scholar]
- Kalinin, B.D. Expanding the Analytical Capabilities of X-ray Fluorescence Analysis on the Principles of Theoretical Corrections of Interelement Influences. Ph.D. Thesis, St. Petersburg University, Saint Petersburg, Russia, 2008; pp. 342p. (In Russian). [Google Scholar]
- Lisienko, D.G.; Dombrovskaya, M.A.; Muzgin, V.N. Problems of development of standard samples of the composition of pure materials, attested by the calculation method. Meas. Equip. 1999, 10, 66–67. [Google Scholar]
- Borkhodoev, V.Y. About a correlation between the limits of detection and determination in X-ray fluorescence analysis. J. Anal. Chem. 2015, 70, 1307–1312. [Google Scholar] [CrossRef]
- Thomsen, V.; Schatzlein, D.; Mercuro, D. Limits of Detection in Spectroscopy. Spectroscopy 2003, 18, 112–114. [Google Scholar]
Element | Sample 1 | Sample 2 | Sample 3 | |||
---|---|---|---|---|---|---|
XRF-FPM | Certified Value | XRF-FPM | Certified Value | XRF-FPM | Certified Value | |
Co | 44.5 ± 2.2 | 44.88 ± 0.45 | 58.4 ± 3.5 | 59.55 ± 0.52 | 46.6 ± 2.3 | 46.16 ± 0.56 |
Sm | 26.2 ± 1.6 | 34.21 ± 0.32 | 38.3 ± 3.1 | 38.62 ± 0.41 | 25.9 ± 1.8 | 32.87 ± 0.23 |
Fe | 18.8 ± 1.1 | 12.46 ± 0.18 | 0.73 ± 0.14 | 0.24 ± 0.01 | 17.2 ± 1.8 | 12.54 ± 0.12 |
Cu | 6.3 ± 0.6 | 5.58 ± 0.11 | - | 0.010 ± 0.0003 | 6.00 ± 0.78 | 5.63 ± 0.05 |
Mn | 0.07 ± 0.01 | 0.0038 ± 0.0005 | 0.44 ± 0.07 | 0.148 ± 0.005 | 0.073 ± 0.009 | 0.0097 ± 0.0002 |
Ni | 0.39 ± 0.04 | 0.0010 ± 0.000044 | 0.71 ± 0.14 | 0.102 ± 0.002 | 0.43 ± 0.06 | 0.018 ± 0.0002 |
Zr | 3.4 ± 0.4 | 2.00 ± 0.02 | 0.33 ± 0.06 | 0.128 ± 0.002 | 3.5 ± 0.5 | 2.18 ± 0.01 |
Cr | 0.040 ± 0.008 | 0.0014 ± 0.00008 | 0.082 ± 0.014 | 0.0095 ± 0.0003 | 0.06 ± 0.02 | 0.04 ± 0.001 |
Hf | 0.28 ± 0.04 | 0.035 ± 0.0008 | 0.74 ± 0.13 | 0.359 ± 0.007 | 0.25 ± 0.05 | 0.051 ± 0.001 |
Ti | 0.030 ± 0.009 | 0.0001 ± 0.00005 | 0.24 ± 0.03 | 0.103 ± 0.001 | 0.020 ± 0.004 | 0.0002 ± 0.00007 |
wt% | ||||||||
---|---|---|---|---|---|---|---|---|
Fe | Cu | Zr | Hf | Ti | Mn | Ni | Cr | |
LOD | 0.021 | 0.016 | 0.0011 | 0.0059 | 0.0031 | 0.0013 | 0.016 | 0.0024 |
LOQ | 0.064 | 0.049 | 0.0033 | 0.018 | 0.0092 | 0.0040 | 0.047 | 0.0073 |
Element | Sample 1 | Sample 2 | Sample 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
XRF | ICP-OES | Certified Values | XRF | ICP-OES | Certified Values | XRF | ICP-OES | Certified Values | |
Co | 45.31 ± 0.56 | 45.05 ± 0.78 | 44.88 ± 0.45 | 59.71 ± 0.60 | 59.90 ± 1.18 | 59.55 ± 0.52 | 46.16 ± 0.56 | 45.72 ± 0.79 | 46.16 ± 0.56 |
Sm | 34.56 ± 0.40 | 34.40 ± 0.61 | 34.21 ± 0.32 | 38.85 ± 0.46 | 38.70 ± 0.68 | 38.62 ± 0.41 | 33.09 ± 0.37 | 32.75 ± 0.60 | 32.87 ± 0.23 |
Fe | 12.44 ± 0.22 | 12.78 ± 0.21 | 12.46 ± 0.18 | 0.26 ± 0.02 | 0.24 ± 0.01 | 0.24 ± 0.01 | 12.78 ± 0.22 | 12.50 ± 0.21 | 12.54 ± 0.12 |
Cu | 5.54 ± 0.10 | 5.63 ± 0.10 | 5.58 ± 0.11 | < LOQ | 0.013 ± 0.0005 | 0.010 ± 0.0003 | 5.73 ± 0.10 | 5.50 ± 0.10 | 5.63 ± 0.05 |
Mn | 0.0040 ± 0.0007 | 0.0033 ± 0.0002 | 0.0038 ± 0.0005 | 0.140 ± 0.012 | 0.156 ± 0.008 | 0.148 ± 0.005 | 0.010 ± 0.002 | 0.0093 ± 0.0004 | 0.0097 ± 0.0002 |
Ni | <LOQ | 0.0012 ± 0.00008 | 0.0010 ± 0.00004 | 0.110 ± 0.010 | 0.098 ± 0.003 | 0.102 ± 0.002 | <LOQ | 0.014 ± 0.0005 | 0.018 ± 0.0002 |
Cr | <LOQ | 0.0014 ± 0.00008 | 0.0015 ± 0.00005 | 0.0089 ± 0.0013 | 0.010 ± 0.0005 | 0.0095 ± 0.0003 | <LOQ | 0.037 ± 0.0012 | 0.04 ± 0.001 |
Zr | 2.02 ± 0.04 | 1.98 ± 0.03 | 2.00 ± 0.02 | 0.120 ± 0.011 | 0.130 ± 0.004 | 0.128 ± 0.002 | 2.19 ± 0.04 | 2.21 ± 0.03 | 2.18 ± 0.01 |
Hf | 0.038 ± 0.005 | 0.036 ± 0.0012 | 0.035 ± 0.0008 | 0.350 ± 0.026 | 0.366 ± 0.009 | 0.359 ± 0.007 | 0.057 ± 0.007 | 0.049 ± 0.0014 | 0.051 ± 0.001 |
Ti | <LOQ | <LOQ | 0.0001 ± 0.00005 | 0.10 ± 0.01 | 0.110 ± 0.003 | 0.103 ± 0.001 | <LOQ | <LOQ | 0.0002 ± 0.00007 |
Crystal | Material | Miller Indices (hkl) | 2d, nm | λ, nm |
---|---|---|---|---|
lithium fluoride LiF200 | LiF | (200) | 0.4027 | first reflection order (1): 0.0821–0.3000 second reflection order (2): 0.0408–0.1664 |
pentaerythrinol PET | C(CH2OH)4 | (002) | 0.8742 | first reflection order (1): 0.5000–0.7218 second reflection order (2): 0.2500–0.3609 |
rubidium biphthalate RbAP | C6H4 (COOH) (COORb) | (001) | 2.590 | first reflection order (1): 0.7000–1.2511 second reflection order (2): 0.3500–0.6256 |
graphite C002 | C | (002) | 0.6708 | first reflection order (1): 0.2500–0.5585 second reflection order (2): 0.1250–0.2773 |
Analytical Line | Wavelength, nm | Overlaps: Line, nm | Measures |
---|---|---|---|
Sm Lα1 | 0.2200 | No overlaps | Sm Lα1 was chosen because the α-series is more intense |
Sm Lβ1 | 0.1998 | No overlaps | |
Co Kα | 0.1790 | Fe Kβ1,3 0.1757 Hf Lι 0.1781 | Co Kβ1,3 was chosen because the influence of interference on Kβ1,3 is less than on Kα, and also due to condition (1) |
Co Kβ1,3 | 0.1621 | Sm Lγ3 0.1657 Ni Kα 0.1659 | |
Fe Kα | 0.1937 | Sm Lβ3 0.1963 Mn Kβ1,3 0.1910 | Fe Kα was chosen due to the complete overlap of Fe Kβ1,3 |
Fe Kβ1,3 | 0.1757 | Co Kα 0.1790 Sm Lγ1 0.1727 Hf Lι 0.1781 | |
Cu Kα | 0.1542 | Hf Lα 0.1570 Ni Kβ1,3 0.1500 | Cu Kα was chosen because the α-series is more intense |
CuK β1,3 | 0.1392 | Hf Lβ1 0.1374 | |
Ti Kα | 0.2750 | No overlaps | Ti Kα was chosen because it is not affected by other elements |
Ti Kβ1,3 | 0.2514 | Sm Lι 0.2482 | |
Hf Lα1 | 0.1570 | Cu Kα 0.1542 Co Kβ1,3 0.1621 | Hf Lα1 in the second reflection order of the LiF200 crystal analyzer was chosen for analysis due to its higher resolution capability |
Hf Lβ1 | 0.1374 | Cu Kβ1,3 0.1392 | |
Zr Kα | 0.0787 | No overlaps | Zr Kα was chosen because the K-series and α-series are more intense |
Zr Kβ | 0.0700 | No overlaps | |
Zr Lα1 | 0.6072 | No overlaps | |
Zr Lβ1 | 0.5836 | No overlaps | |
Ni Kα | 0.1659 | Co Kβ1,3 0.1621 Sm Lγ3 0.1657 | Ni Kβ1,3 was chosen for analysis as it is less affected by other elements |
Ni Kβ1,3 | 0.1500 | Cu Kα 0.1542 Hf Lι 0.1781 | |
Mn Kα | 0.2103 | Cr Kβ1,3 0.2085 | Mn Kα was chosen because the α-series is more intense and less affected by other elements |
Mn Kβ1,3 | 0.1910 | Fe Kα 0.1937 Sm Lβ3 0.1963 | |
Cr Kα | 0.2291 | No overlaps | Cr Kα was chosen because it is not affected by other elements |
Cr Kβ1,3 | 0.2085 | Mn Kα 0.2103 |
Element | Analytical Line | Wavelength, nm | Crystal-Analyzer | Reflection Order | Measuring Time for Line, s | Tube Current, mA |
---|---|---|---|---|---|---|
Sm | Lα | 0.2200 | LiF200 | 1 | 10 | 0.4 |
Co | Kβ1,3 | 0.1621 | LiF200 | 1 | 10 | 0.4 |
Cu | Kα | 0.1542 | LiF200 | 1 | 10 | 0.5 |
Fe | Kα | 0.1937 | LiF200 | 1 | 10 | 0.5 |
Ti | Kα | 0.2750 | C002 | 1 | 10 | 3.5 |
Zr | Kα | 0.6071 | LiF200 | 2 | 50 | 3.5 |
Hf | Lα | 0.1574 | LiF200 | 2 | 50 | 3.5 |
Cr | Kα | 0.2291 | LiF200 | 1 | 50 | 3.5 |
Mn | Kα | 0.2103 | LiF200 | 1 | 50 | 3.5 |
Ni | Kβ1,3 | 0.1500 | LiF200 | 1 | 50 | 3.5 |
Sample Code | Content, wt% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Cu | Zr | Hf | Ti | Mn | Ni | Cr | Sm | Co | |
CS 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 42.16 | 57.84 |
CS 2 | 1.00 | 1.00 | 0.05 | 0.05 | 0.05 | 0.01 | 0.01 | 0.01 | 41.24 | 56.58 |
CS 3 | 2.50 | 2.50 | 0.10 | 0.10 | 0.10 | 0.05 | 0.05 | 0.05 | 39.86 | 54.69 |
CS 4 | 5.00 | 5.00 | 0.50 | 0.25 | 0.25 | 0.10 | 0.10 | 0.10 | 37.40 | 51.30 |
CS 5 | 7.50 | 7.50 | 1.00 | 0.50 | 0.50 | 0.25 | 0.25 | 0.25 | 34.68 | 47.57 |
CS 6 | 10.00 | 10.00 | 2.50 | 0.75 | 0.75 | 0.50 | 0.50 | 0.50 | 31.41 | 43.09 |
CS 7 | 15.00 | 15.00 | 5.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 25.30 | 34.70 |
Sample Code | Batch 1 | Batch 2 | Batch 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Volume of Standard Solution, mL | Weight of Mixed Powders, g | Volume of Standard Solution, mL | |||||||
Zr | Hf | Ti | Sm2Co7 | CuO | Fe2O3 | Mn | Ni | Cr | |
CS 2 | 0.35 | 0.35 | 0.35 | 4.1846 | 1.3142 | 1.5012 | 0.08 | 0.08 | 0.08 |
CS 3 | 0.70 | 0.70 | 0.70 | 5.1230 | 0.8760 | 1.0010 | 0.40 | 0.40 | 0.40 |
CS 4 | 3.50 | 1.75 | 1.75 | 5.5923 | 0.6573 | 0.7504 | 0.80 | 0.80 | 0.80 |
CS 5 | 7.00 | 3.50 | 3.50 | 6.0613 | 0.4382 | 0.5005 | 2.00 | 2.00 | 2.00 |
CS 6 | 17.50 | 5.25 | 5.25 | 6.5306 | 0.2191 | 0.2503 | 4.00 | 4.00 | 4.00 |
CS 7 | 35.00 | 7.00 | 7.00 | 6.8124 | 0.0875 | 0.1001 | 8.00 | 8.00 | 8.00 |
Element | Analytical Line | Wavelength, nm | Crystal-Analyzer | Reflection Order | Measuring Time for Line, s | Tube Current, mA |
---|---|---|---|---|---|---|
Sm | Lα | 0.2200 | C002 | 2 | 40 | 0.2 |
Co | Kα | 0.1621 | C002 | 2 | 40 | 0.2 |
Cu | Kα | 0.1542 | C002 | 2 | 40 | 0.2 |
Fe | Kα | 0.1937 | C002 | 2 | 40 | 0.2 |
Ti | Kα | 0.2750 | C002 | 1 | 40 | 0.5 |
Zr | Kα | 0.6071 | LiF200 | 2 | 50 | 3.5 |
Hf | Lα | 0.1574 | LiF200 | 2 | 50 | 3.5 |
Cr | Kα | 0.2291 | LiF200 | 1 | 50 | 3.5 |
Mn | Kα | 0.2103 | LiF200 | 1 | 50 | 3.5 |
Ni | Kβ1,3 | 0.1500 | LiF200 | 1 | 50 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkhipenko, A.A.; Marina, G.E.; Doronina, M.S.; Korotkova, N.A.; Baranovskaya, V.B. X-ray Fluorescence Analysis of Waste Sm-Co Magnets: A Rational Approach. Recycling 2023, 8, 84. https://doi.org/10.3390/recycling8060084
Arkhipenko AA, Marina GE, Doronina MS, Korotkova NA, Baranovskaya VB. X-ray Fluorescence Analysis of Waste Sm-Co Magnets: A Rational Approach. Recycling. 2023; 8(6):84. https://doi.org/10.3390/recycling8060084
Chicago/Turabian StyleArkhipenko, Alexandra Alexandrovna, Galina Evgenievna Marina, Marina Sergeevna Doronina, Natalya Alexandrovna Korotkova, and Vasilisa Borisovna Baranovskaya. 2023. "X-ray Fluorescence Analysis of Waste Sm-Co Magnets: A Rational Approach" Recycling 8, no. 6: 84. https://doi.org/10.3390/recycling8060084
APA StyleArkhipenko, A. A., Marina, G. E., Doronina, M. S., Korotkova, N. A., & Baranovskaya, V. B. (2023). X-ray Fluorescence Analysis of Waste Sm-Co Magnets: A Rational Approach. Recycling, 8(6), 84. https://doi.org/10.3390/recycling8060084