Alleviation of Selected Environmental Waste through Biodegradation by Black Soldier Fly (Hermetia illucens) Larvae: A Meta-Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. The Impact of Environmental Waste on the Conversion Performance of BSF Larvae
3.2. The Impact of Environmental Waste on the Growth Performance of BSF Larvae
3.3. The Impact of Environmental Waste on the Composition of BSF Larvae
3.4. Quantifying the WRI for Environmental Waste
4. Materials and Methods
4.1. Database Development
4.2. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awasthi, S.K.; Joshi, R.; Dhar, H.; Verma, S.; Awasthi, M.K.; Varjani, S.; Sarsaiya, S.; Zhang, Z.; Kumar, S. Improving methane yield and quality via co-digestion of cow dung mixed with food waste. Bioresour. Technol. 2018, 251, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Delley, M.; Brunner, T.A. Foodwaste within Swiss households: A segmentation of the population and suggestions for preventive measures. Resour. Conserv. Recycl. 2017, 122, 172–184. [Google Scholar] [CrossRef]
- Zhang, Y.; van Herpen, E.; Van Loo, E.J.; Pandelaere, M.; Geuens, M. Save near-expired food: Does a message to avoid food waste affect food purchase and household waste prevention behaviors? J. Clean. Prod. 2023, 384. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Ribbers, D.; Geuens, M.; Pandelaere, M.; van Herpen, E. Development and validation of the motivation to avoid food waste scale. Glob. Environ. Chang. 2023, 78, 102626. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Thakur, I.S.; Nair, R.B.; Pandey, A. Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.S.; Kee, P.E.; Yim, H.S.; Chen, P.-T.; Wei, Y.-H.; Lan, J.C.-W. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour. Technol. 2020, 302, 122889. [Google Scholar] [CrossRef]
- Hopkins, I.; Newman, L.P.; Gill, H.; Danaher, J. The Influence of Food Waste Rearing Substrates on Black Soldier Fly Larvae Protein Composition: A Systematic Review. Insects 2021, 12, 608. [Google Scholar] [CrossRef]
- Pruwita, I.; Prasetya, A.; Purnomo, C.W. The effects of feedstock on the bioconversion of organic solid waste with black soldier fly larvae. AIP Conf. Proc. 2022, 2578, 020003. [Google Scholar] [CrossRef]
- Fu, S.-F.; Wang, D.-H.; Xie, Z.; Zou, H.; Zheng, Y. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. Sci. Total. Environ. 2022, 830, 154654. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Novandri, B.; Yantina, N.; Ridla, M. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study. Vet. World 2017, 10, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, M.R.; Nurjanah, N. The Nutrient Content of Nile Tilapia Fed with Black Soldier Fly (BSF) Larvae Mikrobiologi Hasil Perikanan View Project Bioconversion View Project. Available online: https://www.researchgate.net/publication/355218195 (accessed on 4 September 2023).
- Jayanegara, A.; Haryati, R.P.; Nafisah, A.; Suptijah, P.; Ridla, M.; Laconi, E.B. Derivatization of Chitin and Chitosan from Black Soldier Fly (Hermetia illucens) and Their Use as Feed Additives: An In vitro Study. Adv. Anim. Vet. Sci. 2020, 8, 472–477. [Google Scholar] [CrossRef]
- Suparman, S.; Purwanti, S.; Nahariah, N. The effect of fish meal protein substitution with Black Soldier Fly (BSF) larva meal protein in quail feed on the chemical quality of eggs. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012071. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total. Environ. 2013, 458–460, 312–318. [Google Scholar] [CrossRef]
- Zhou, F.; Tomberlin, J.K.; Zheng, L.; Yu, Z.; Zhang, J. Developmental and Waste Reduction Plasticity of Three Black Soldier Fly Strains (Diptera: Stratiomyidae) Raised on Different Livestock Manures. J. Med Èntomol. 2013, 50, 1224–1230. [Google Scholar] [CrossRef]
- Banks, I.J.; Gibson, W.T.; Cameron, M.M. Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop. Med. Int. Health 2014, 19, 14–22. [Google Scholar] [CrossRef]
- Nyakeri, E.; Ogola, H.; Ayieko, M.; Amimo, F. Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. J. Insects Food Feed. 2017, 3, 193–202. [Google Scholar] [CrossRef]
- Ur Rehman, K.; Cai, M.; Xiao, X.; Zheng, L.; Wang, H.; Soomro, A.A.; Zhou, Y.; Li, W.; Yu, Z.; Zhang, J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). J. Environ. Manag. 2017, 196, 458–465. [Google Scholar] [CrossRef]
- Rehman, K.U.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 2017, 154, 366–373. [Google Scholar] [CrossRef]
- Liu, Z.; Minor, M.; Morel, P.C.H.; Najar-Rodriguez, A.J. Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environ. Èntomol. 2018, 47, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Xiao, X.; Mazza, L.; Yu, Y.; Cai, M.; Zheng, L.; Tomberlin, J.K.; Yu, J.; van Huis, A.; Yu, Z.; Fasulo, S.; et al. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J. Environ. Manag. 2018, 217, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, K.; Zhong, W.; Liu, N.; Wu, X.; Li, W.; Zheng, L.; Yu, Z.; Zhang, J. Bioconversion-Composting of Golden Needle Mushroom (Flammulina velutipes) Root Waste by Black Soldier Fly (Hermetia illucens, Diptera: Stratiomyidae) Larvae, to Obtain Added-Value Biomass and Fertilizer. Waste Biomass Valorization 2019, 10, 265–273. [Google Scholar] [CrossRef]
- Cappellozza, S.; Leonardi, M.G.; Savoldelli, S.; Carminati, D.; Rizzolo, A.; Cortellino, G.; Terova, G.; Moretto, E.; Badaile, A.; Concheri, G.; et al. A first attempt to produce proteins from insects by means of a circular economy. Animals 2019, 9, 278. [Google Scholar] [CrossRef]
- Ermolaev, E.; Lalander, C.; Vinnerås, B. Greenhouse gas emissions from small-scale fly larvae composting with Hermetia illucens. Waste Manag. 2019, 96, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Ganda, H.; Zannou-Boukari, E.; Kenis, M.; Chrysostome, C.; Mensah, G. Potentials of animal, crop and agri-food wastes for the production of fly larvae. J. Insects Food Feed. 2019, 5, 59–67. [Google Scholar] [CrossRef]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Life-History Traits of the Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), Reared on Three Manure Types. Animals 2019, 9, 281. [Google Scholar] [CrossRef]
- Nyakeri, E.; Ayieko, M.; Amimo, F.; Salum, H.; Ogola, H. An optimal feeding strategy for black soldier fly larvae biomass production and faecal sludge reduction. J. Insects Food Feed. 2019, 5, 201–213. [Google Scholar] [CrossRef]
- Ur Rehman, K.; Ur Rehman, R.; Somroo, A.A.; Cai, M.; Zheng, L.; Xiao, X.; Ur Rehman, A.; Rehman, A.; Tomberlin, J.K.; Yu, Z.; et al. Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. J. Environ. Manag. 2019, 237, 75–83. [Google Scholar] [CrossRef]
- Somroo, A.A.; Rehman, K.U.; Zheng, L.; Cai, M.; Xiao, X.; Hu, S.; Mathys, A.; Gold, M.; Yu, Z.; Zhang, J. Influence of Lactobacillus buchneri on soybean curd residue co-conversion by black soldier fly larvae (Hermetia illucens) for food and feedstock production. Waste Manag. 2019, 86, 114–122. [Google Scholar] [CrossRef]
- Gold, M.; Cassar, C.M.; Zurbrügg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.; Ermolaev, E.; Wiklicky, V.; Vinnerås, B. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content. Sci. Total. Environ. 2020, 729, 138968. [Google Scholar] [CrossRef]
- Lopes, I.G.; Lalander, C.; Vidotti, R.M.; Vinnerås, B. Reduction of Bacteria in Relation to Feeding Regimes When Treating Aquaculture Waste in Fly Larvae Composting. Front. Microbiol. 2020, 11, 1616. [Google Scholar] [CrossRef] [PubMed]
- Mazza, L.; Xiao, X.; Rehman, K.U.; Cai, M.; Zhang, D.; Fasulo, S.; Tomberlin, J.K.; Zheng, L.; Soomro, A.A.; Yu, Z.; et al. Management of chicken manure using black soldier fly (Diptera: Stratiomyidae) larvae assisted by companion bacteria. Waste Manag. 2020, 102, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Aris, M.N.M.; Daud, H.; Lam, M.K.; Yong, C.S.; Abu Hasan, H.; Chong, S.; Show, P.L.; Hajoeningtijas, O.D.; Ho, Y.C.; et al. In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens: Statistical Augmentation of Larval Lipid Content. Sustainability 2020, 12, 1558. [Google Scholar] [CrossRef]
- Broeckx, L.; Frooninckx, L.; Slegers, L.; Berrens, S.; Noyens, I.; Goossens, S.; Verheyen, G.; Wuyts, A.; Van Miert, S. Growth of Black Soldier Fly Larvae Reared on Organic Side-Streams. Sustainability 2021, 13, 12953. [Google Scholar] [CrossRef]
- Dzepe, D.; Nana, P.; Kuietche, H.M.; Kimpara, J.M.; Magatsing, O.; Tchuinkam, T.; Djouaka, R. Feeding strategies for small-scale rearing black soldier fly larvae (Hermetia illucens) as organic waste recycler. SN Appl. Sci. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Gold, M.; Fowles, T.; Fernandez-Bayo, J.; Miner, L.P.; Zurbrügg, C.; Nansen, C.; Bischel, H.; Mathys, A. Effects of rearing system and microbial inoculation on black soldier fly larvae growth and microbiota when reared on agri-food by-products. J. Insects Food Feed. 2022, 8, 113–127. [Google Scholar] [CrossRef]
- Klammsteiner, T.; Walter, A.; Bogataj, T.; Heussler, C.D.; Stres, B.; Steiner, F.M.; Schlick-Steiner, B.C.; Insam, H. Impact of Processed Food (Canteen and Oil Wastes) on the Development of Black Soldier Fly (Hermetia illucens) Larvae and Their Gut Microbiome Functions. Front. Microbiol. 2021, 12, 619112. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2018, 208, 211–219. [Google Scholar] [CrossRef]
- Pliantiangtam, N.; Chundang, P.; Kovitvadhi, A. Growth Performance, Waste Reduction Efficiency and Nutritional Composition of Black Soldier Fly (Hermetia illucens) Larvae and Prepupae Reared on Coconut Endosperm and Soybean Curd Residue with or without Supplementation. Insects 2021, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Fischer, H.; Kumar, V.; Francis, S.A.; Sinha, A.K. Productivity, conversion ability, and biochemical composition of black soldier fly (Hermetia illucens) larvae fed with sweet potato, spent coffee or dough. Int. J. Trop. Insect Sci. 2022, 42, 183–190. [Google Scholar] [CrossRef]
- Singh, A.; Srikanth, B.H.; Kumari, K. Determining the Black Soldier fly larvae performance for plant-based food waste reduction and the effect on Biomass yield. Corrigendum to Waste Manag. 2021, 130, 147–154. Waste Manag. 2022, 144, 122–154. [Google Scholar] [CrossRef]
- Taufek, N.; Lim, J.; Abu Bakar, N. Comparative evaluation of Hermetia illucens larvae reared on different substrates for red tilapia diet: Effect on growth and body composition. J. Insects Food Feed. 2021, 7, 79–88. [Google Scholar] [CrossRef]
- Veldkamp, T.; van Rozen, K.; Elissen, H.; van Wikselaar, P.; van der Weide, R. Bioconversion of Digestate, Pig Manure and Vegetal Residue-Based Waste Operated by Black Soldier Fly Larvae, Hermetia illucens L. (Diptera: Stratiomyidae). Animals 2021, 11, 3082. [Google Scholar] [CrossRef]
- Wong, C.Y.; Kiatkittipong, K.; Kiatkittipong, W.; Ntwampe, S.K.O.; Lam, M.K.; Goh, P.S.; Cheng, C.K.; Bashir, M.J.K.; Lim, J.W. Black Soldier Fly Larval Valorization Benefitting from Ex-Situ Fungal Fermentation in Reducing Coconut Endosperm Waste. Processes 2021, 9, 275. [Google Scholar] [CrossRef]
- Arabzadeh, G.; Delisle-Houde, M.; Tweddell, R.J.; Deschamps, M.-H.; Dorais, M.; Lebeuf, Y.; Derome, N.; Vandenberg, G. Diet Composition Influences Growth Performance, Bioconversion of Black Soldier Fly Larvae: Agronomic Value and In Vitro Biofungicidal Activity of Derived Frass. Agronomy 2022, 12, 1765. [Google Scholar] [CrossRef]
- Bohm, K.; Hatley, G.A.; Robinson, B.H.; Gutiérrez-Ginés, M.J. Black Soldier Fly-based bioconversion of biosolids creates high-value products with low heavy metal concentrations. Resour. Conserv. Recycl. 2022, 180, 106149. [Google Scholar] [CrossRef]
- Franco, A.; Scieuzo, C.; Salvia, R.; Mancini, I.M.; Caniani, D.; Masi, S.; Falabella, P. A mobile black soldier fly farm for on-site disposal of animal dairy manure. Bull Insectology 2022, 75, 75–82. [Google Scholar]
- Holeh, G.M.; Opiyo, M.A.; Brown, C.L.; Sumbule, E.; Gatagwu, J.; Oje, E.O.; Munyi, F. Effect of Different Waste Substrates on the Growth, Development and Proximate Composition Of Black Soldier Fly (Hermetia illucens) Larvae. Available online: www.lrrd.org/lrrd34/7/3457hole.html (accessed on 4 September 2023).
- Khaekratoke, K.; Laksanawimol, P.; Thancharoen, A. Use of fermented spent coffee grounds as a substrate supplement for rearing black soldier fly larvae, Hermetia illucens (L), (Diptera: Stratiomyidae). PeerJ 2022, 10, e14340. [Google Scholar] [CrossRef]
- Lindberg, L.; Ermolaev, E.; Vinnerås, B.; Lalander, C. Process efficiency and greenhouse gas emissions in black soldier fly larvae composting of fruit and vegetable waste with and without pre-treatment. J. Clean. Prod. 2022, 338, 130552. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, J.; Hou, D.; Li, X.; Jiang, H.; Chen, H.; Yu, Z.; Tomberlin, J.K.; Zhang, Z.; Li, Q. Effects of biochar amendment on bioconversion of soybean dregs by black soldier fly. Sci. Total. Environ. 2022, 829, 154605. [Google Scholar] [CrossRef]
- Rasdi FL, M.; Ishak, A.R.; Hua, P.W.; Shaifuddin SN, M.; Dom, N.C.; Shafie, F.A.; Abdullah, A.M.; Kari, Z.A.; Atan, E.H. Article History Growth and Development of Black Soldier Fly (Hermetia illucens (L.), Diptera: Stratiomyidae) Larvae Grown on Carbohydrate, Protein, and Fruit-Based Waste Substrates. Malays. Appl. Biol. 2022, 51, 57–64. [Google Scholar] [CrossRef]
- Scieuzo, C.; Franco, A.; Salvia, R.; Triunfo, M.; Addeo, N.F.; Vozzo, S.; Piccolo, G.; Bovera, F.; Ritieni, A.; Di Francia, A.; et al. Enhancement of fruit byproducts through bioconversion by Hermetia illucens (Diptera: Stratiomyidae). Insect Sci. 2022, 30, 991–1010. [Google Scholar] [CrossRef]
- Yuan, M.C.; Hasan, H.A. Effect of Feeding Rate on Growth Performance and Waste Reduction Efficiency of Black Soldier Fly Larvae (Diptera: Stratiomyidae). Trop. Life Sci. Res. 2022, 33, 179–199. [Google Scholar] [CrossRef]
- Muin, H.; Alias, Z.; Nor, A.M.; Taufek, N.M. Bioconversion of Desiccated Coconut and Soybean Curd Residues for Enhanced Black Soldier Fly Larvae Biomass as a Circular Bioeconomy Approach. Waste Biomass-Valorization 2023, 14, 249–260. [Google Scholar] [CrossRef]
- Kalová, M.; Borkovcová, M. Voracious larvae Hermetia illucens and treatment of selected types of biodegradable waste. Acta Univ. Agric. et Silvic. Mendel. Brun. 2013, 61, 77–83. [Google Scholar] [CrossRef]
- Yuwono, A.S.; Permana, I.G.; Nurulalia, L.; Mentari, P.D. Decomposition Characteristics of Selected Solid Organic Wastes by Black Soldier Fly (BSF) Larvae as Affected by Temperature Regimes. Pol. J. Environ. Stud. 2021, 30, 4343–4351. [Google Scholar] [CrossRef]
- Fitriana, E.L.; Laconi, E.B.; Jayanegara, A. Influence of various organic wastes on growth performance and nutrient composition of black soldier fly larvae (Hermetia illucens): A meta-analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012051. [Google Scholar] [CrossRef]
- Fadhillah, N.; Bagastyo, A.Y. Utilization of Hermetia illucens Larvae as A Bioconversion Agent to Reduce Organic Waste. IOP Conf. Ser. Earth Environ. Sci. 2020, 506, 012005. [Google Scholar] [CrossRef]
- Julita, U.; Fatimah, S.; Suryani, Y.; Kinasih, I.; Fitri, L.; Permana, A. Bioconversion of Food Waste by Black Soldier Fly, Hermetia illucens larvae (Diptera: Stratiomyidae L.) for Alternative Animal Feed Stock. In Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, Bandung, Indonesia, 11–12 July 2019. [Google Scholar] [CrossRef]
- Priyambada, I.B.; Sumiyati, S.; Puspita, A.S.; A Wirawan, R. Optimization of organic waste processing using Black Soldier Fly larvae Case study: Diponegoro university. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012017. [Google Scholar] [CrossRef]
- Deng, B.; Zhu, J.; Wang, G.; Xu, C.; Zhang, X.; Wang, P.; Yuan, Q. Effects of three major nutrient contents, compost thickness and treatment time on larval weight, process performance and residue component in black soldier fly larvae (Hermetia illucens) composting. J. Environ. Manag. 2022, 307, 114610. [Google Scholar] [CrossRef]
- Adebayo, H.A.; Kemabonta, K.A.; Ogbogu, S.S.; Elechi, M.C.; Obe, M.T. Comparative assessment of developmental parameters, proximate analysis and mineral compositions of black soldier fly (Hermetia illucens) prepupae reared on organic waste substrates. Int. J. Trop. Insect Sci. 2021, 41, 1953–1959. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environ. Èntomol. 2015, 44, 406–410. [Google Scholar] [CrossRef]
- Scala, A.; Cammack, J.A.; Salvia, R.; Scieuzo, C.; Franco, A.; Bufo, S.A.; Tomberlin, J.K.; Falabella, P. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Perera, K.; Liyanage, C.; Jinadasa, H.; Gedara, P.K.; Karunaratne, W. Resource-efficient and eco-friendly model for fruit processing industry waste valorisation using black soldier fly (Hermetia illucens) larvae under tropical conditions. J. Insects Food Feed. 2021, 8, 267–279. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistiacl Methods for Meta-Analysis; Harcourt Brace Jovanovich Publisher: Orlando, FL, USA, 1985. [Google Scholar]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef] [PubMed]
- Rahmadani, M.; Susanto, I.; Prasetya, R.D.D.; Kondo, M.; Nahrowi, N.; Jayanegara, A. Modification of dietary rumen degradable starch content by chemical processing of feed ingredients: A meta-analysis. Anim. Sci. J. 2023, 94, e13834. [Google Scholar] [CrossRef]
- Dersimonian, R.; Laird, N. Meta-Analysis in Clinical Trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
Study | Substrate | Subgroup | Reference | Author |
---|---|---|---|---|
1 | Pig manure | Fecal waste | [16] | Lalander et al., 2013 |
2 | Chicken/swine manure | Fecal waste | [17] | Zhou et al., 2013 |
3 | Feces | Fecal waste | [18] | Banks et al., 2014 |
4 | Restaurant waste | Kitchen waste | [19] | Nyakeri et al., 2017 |
Banana peel | Fruit and vegetable wastes | |||
Fecal sludge | Fecal waste | |||
5 | Dairy/chicken manure | Fecal waste | [20] | Rehman et al., 2017 |
6 | Soybean curd residue | Fruit and vegetable wastes | [21] | Rehman et al., 2017 |
7 | Pig manure | Fecal waste | [22] | Liu et al., 2018 |
8 | Fruit waste | Fruit and vegetable wastes | [23] | Meneguz et al., 2018 |
9 | Chicken manure | Fecal waste | [24] | Xiao et al., 2018 |
10 | Restaurant waste | Kitchen waste | [25] | Cai et al., 2019 |
11 | Vegetable waste | Fruit and vegetable wastes | [26] | Cappellozza et al., 2019 |
12 | Canteen waste | Kitchen waste | [27] | Ermolaev et al., 2019 |
13 | Cow/guinea fowl manure | Fecal waste | [28] | Ganda et al., 2019 |
Chicken/pig manure | Fecal waste | |||
Sheep/goat manure | Fecal waste | |||
14 | Dairy manure | Fecal waste | [29] | Miranda et al., 2019 |
Poultry/swine manure | Fecal waste | |||
15 | Restaurant waste | Kitchen waste | [30] | Nyakeri et al., 2019 |
16 | Dairy/chicken manure | Fecal waste | [31] | Rehman et al., 2019 |
17 | Soybean curd residues | Fruit and vegetable wastes | [32] | Somroo et al., 2019 |
18 | Restaurant/canteen waste | Kitchen waste | [33] | Gold et al., 2020 |
Vegetable waste | Fruit and vegetable wastes | |||
Cow manure | Fecal waste | |||
Human feces | Fecal waste | |||
19 | Household waste | Kitchen waste | [34] | Lalander et al., 2020 |
20 | Reclaimed bread | Kitchen waste | [35] | Lopes et al., 2020 |
21 | Chicken manure | Fecal waste | [36] | Mazza et al., 2020 |
22 | Coconut endosperm waste | Fruit and vegetable wastes | [37] | Wong et al., 2020 |
23 | Household/restaurant waste | Kitchen waste | [38] | Broeckx et al., 2021 |
Apple pulp, fruit puree | Fruit and vegetable wastes | |||
Vegetable overproduction | Fruit and vegetable wastes | |||
Chicken manure | Fecal waste | |||
24 | Fruit waste | Fruit and vegetable wastes | [39] | Dzepe et al., 2021 |
Chicken manure | Fecal waste | |||
25 | White wine pomace | Fruit and vegetable wastes | [40] | Gold et al., 2021 |
Tomato pomace | Fruit and vegetable wastes | |||
26 | Canteen waste | Kitchen waste | [41] | Klammsteiner et al., 2021 |
27 | Restaurant waste | Kitchen waste | [42] | Lalander et al., 2021 |
Fruit and vegetable wastes | Fruit and vegetable wastes | |||
Human feces | Fecal waste | |||
Poultry manure | Fecal waste | |||
28 | Coconut endosperm waste | Fruit and vegetable wastes | [43] | Pliantiangtam et al., 2021 |
Soybean curd residue | Fruit and vegetable wastes | |||
29 | Spent coffee, bread dough | Kitchen waste | [44] | Romano et al., 2021 |
30 | Restaurant waste | Kitchen waste | [45] | Singh et al., 2021 |
Fruit and vegetable wastes | Fruit and vegetable wastes | |||
31 | Coconut endosperm waste | Fruit and vegetable wastes | [46] | Taufek et al., 2021 |
32 | Swill | Kitchen waste | [47] | Veldkamp et al., 2021 |
Pig manure | Fecal waste | |||
33 | Coconut endosperm waste | Fruit and vegetable wastes | [48] | Wong et al., 2021 |
34 | Mixed fruits and vegetables | Kitchen waste | [49] | Arabzadeh et al., 2022 |
Bakery waste | ||||
35 | Household waste | Kitchen waste | [50] | Bohm et al., 2022 |
36 | Mature/fresh dairy manure | Fecal waste | [51] | Franco et al., 2022 |
37 | Dining hall waste | Kitchen waste | [11] | Fu et al., 2022 |
38 | Market waste | Fruit and vegetable wastes | [52] | Holeh et al., 2022 |
39 | Fruit–vegetable pulp | Fruit and vegetable wastes | [53] | Khaekratoke et al., 2022 |
40 | Household waste | Kitchen waste | [54] | Lindberg et al., 2022 |
Broccoli/cauliflower waste | Fruit and vegetable wastes | |||
Orange peel | Fruit and vegetable wastes | |||
41 | Soybean dregs | Fruit and vegetable wastes | [55] | Qin et al., 2022 |
42 | Leftover boneless chicken | Kitchen waste | [56] | Rasdi et al., 2022 |
Overnight rice | Kitchen waste | |||
Rotten banana | Fruit and vegetable wastes | |||
43 | Strawberry, tangerine, orange waste | Fruit and vegetable wastes | [57] | Scieuzo et al., 2022 |
44 | Fish, food waste | Kitchen waste | [58] | Yuan and Hasan, 2022 |
45 | Soybean curd residue | Fruit and vegetable wastes | [59] | Muin et al., 2023 |
SMD (95% CI) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Variables | N | Subgroup | Estimate | Lower Bound | Upper Bound | Std. Error | p-Value | Tau2 | Q | Het. p-Value | I2 |
1 | WRI | 54 | Overall | 0.944 | 0.063 | 1.826 | 0.450 | 0.036 | 8.069 | 375.841 | <0.001 | 85.898 |
Fecal waste | −4.057 | −5.910 | −2.204 | 0.945 | <0.001 | |||||||
Fruit and vegetable wastes | 1.250 | 0.415 | 2.085 | 0.426 | 0.003 | |||||||
Kitchen waste | 6.624 | 4.060 | 9.187 | 1.308 | <0.001 | |||||||
2 | WRR | 19 | Overall | −0.218 | −1.447 | 1.011 | 0.627 | 0.728 | 5.894 | 189.412 | <0.001 | 90.497 |
Fecal waste | −1.400 | −2.930 | 0.130 | 0.781 | 0.073 | |||||||
Fruit and vegetable wastes | 0.104 | −2.224 | 2.431 | 1.188 | 0.930 | |||||||
Kitchen waste | 1.047 | −2.360 | 4.454 | 1.738 | 0.547 | |||||||
3 | MRR | 33 | Overall | 0.782 | −0.584 | 2.148 | 0.697 | 0.262 | 11.747 | 235.849 | <0.001 | 86.432 |
Fecal waste | −0.667 | −2.401 | 1.067 | 0.885 | 0.451 | |||||||
Fruit and vegetable wastes | 3.434 | −1.579 | 8.447 | 2.558 | 0.179 | |||||||
Kitchen waste | 1.481 | −0.691 | 3.653 | 1.108 | 0.181 | |||||||
4 | SRR | 41 | Overall | −1.560 | −2.514 | −0.606 | 0.487 | 0.001 | 6.805 | 239.026 | <0.001 | 83.265 |
Fecal waste | −3.412 | −4.527 | −2.296 | 0.569 | <0.001 | |||||||
Fruit and vegetable wastes | 0.722 | −0.477 | 1.921 | 0.612 | 0.238 | |||||||
Kitchen waste | 3.083 | −2.256 | 8.421 | 2.724 | 0.258 | |||||||
5 | BR | 71 | Overall | 1.227 | 0.476 | 1.978 | 0.383 | 0.001 | 7.106 | 482.254 | <0.001 | 85.485 |
Fecal waste | 2.445 | 1.227 | 3.663 | 0.621 | <0.001 | |||||||
Fruit and vegetable wastes | −0.762 | −2.058 | 0.534 | 0.661 | 0.249 | |||||||
Kitchen waste | 1.162 | −0.174 | 2.497 | 0.681 | 0.088 | |||||||
6 | FCR | 28 | Overall | −2.543 | −3.598 | −1.488 | 0.538 | <0.001 | 6.096 | 155.783 | <0.001 | 82.668 |
Fecal waste | −3.859 | −4.934 | −2.784 | 0.549 | <0.001 | |||||||
Fruit and vegetable wastes | 0.703 | −1.868 | 3.275 | 1.312 | 0.592 | |||||||
Kitchen waste | −1.015 | −3.072 | 1.041 | 1.049 | 0.333 |
SMD (95% CI) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Variables | N | Subgroup | Estimate | Lower Bound | Upper Bound | Std. Error | p-Value | Tau2 | Q | Het. p-Value | I2 |
1 | GR | 25 | Overall | 1.457 | 0.315 | 2.600 | 0.583 | 0.012 | 5.605 | 123.305 | <0.001 | 80.536 |
Fecal waste | −4.844 | −15.697 | 6.010 | 5.538 | 0.382 | |||||||
Fruit and vegetable wastes | 1.839 | 0.703 | 2.974 | 0.579 | 0.002 | |||||||
Kitchen waste | 2.352 | −2.003 | 6.707 | 2.222 | 0.290 | |||||||
2 | LW | 91 | Overall | 1.194 | 0.508 | 1.880 | 0.350 | <0.001 | 8.583 | 845.774 | <0.001 | 89.359 |
Fecal waste | 4.153 | 2.329 | 5.976 | 0.930 | <0.001 | |||||||
Fruit and vegetable wastes | −0.659 | −1.397 | 0.079 | 0.376 | 0.080 | |||||||
Kitchen waste | 1.372 | 0.393 | 2.350 | 0.499 | 0.006 | |||||||
3 | SR | 43 | Overall | 0.870 | 0.226 | 1.513 | 0.328 | 0.008 | 3.171 | 187.269 | <0.001 | 77.572 |
Fecal waste | 1.798 | 0.833 | 2.763 | 0.492 | <0.001 | |||||||
Fruit and vegetable wastes | −0.088 | −1.141 | 0.965 | 0.537 | 0.870 | |||||||
Kitchen waste | 0.405 | −0.765 | 1.574 | 0.597 | 0.498 | |||||||
4 | TD | 24 | Overall | −1.098 | −1.998 | −0.199 | 0.459 | 0.017 | 3.512 | 105.669 | <0.001 | 78.234 |
Fecal waste | −2.077 | −3.083 | −1.071 | 0.513 | <0.001 | |||||||
Fruit and vegetable wastes | 1.091 | −0.404 | 2.586 | 0.763 | 0.153 | |||||||
Kitchen waste | −1.876 | −4.683 | 0.930 | 1.432 | 0.190 |
SMD (95% CI) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Variables | N | Subgroup | Estimate | Lower Bound | Upper Bound | Std. Error | p-Value | Tau2 | Q | Het. p-Value | I2 |
1 | Dry matter | 15 | Overall | −0.707 | −2.421 | 1.007 | 0.875 | 0.419 | 9.866 | 178.267 | <0.001 | 92.147 |
Fecal waste | −2.230 | −4.644 | 0.183 | 1.231 | 0.070 | |||||||
Fruit and vegetable wastes | 0.036 | −2.804 | 2.876 | 1.449 | 0.980 | |||||||
Kitchen waste | 3.387 | 1.614 | 5.159 | 0.904 | <0.001 | |||||||
2 | Protein | 27 | Overall | −1.226 | −2.149 | −0.303 | 0.471 | 0.009 | 4.202 | 174.585 | <0.001 | 85.108 |
Fecal waste | −0.831 | −1.793 | 0.131 | 0.491 | 0.090 | |||||||
Fruit and vegetable wastes | −1.866 | −6.276 | 2.545 | 2.250 | 0.407 | |||||||
Kitchen waste | −1.511 | −3.733 | 0.712 | 1.134 | 0.183 |
Variable | Subgroup | NC | Control | Experiment | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | Mean | Min | Max | SD | |||
WRI | All | 54 | 2.94 | 0.23 | 8.90 | 1.91 | 3.03 | 0.18 | 10.60 | 2.34 |
(g/day) | Fecal waste | 11 | 3.50 | 0.51 | 4.50 | 1.09 | 2.22 | 0.18 | 5.40 | 1.29 |
Fruit and vegetable wastes | 32 | 2.65 | 0.23 | 8.90 | 2.05 | 2.72 | 0.33 | 9.53 | 2.14 | |
Kitchen waste | 11 | 3.23 | 1.55 | 7.35 | 2.12 | 4.77 | 1.92 | 10.60 | 2.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkifli, S.; Jayanegara, A.; Pramudya, B.; Fahmi, M.R.; Rahmadani, M. Alleviation of Selected Environmental Waste through Biodegradation by Black Soldier Fly (Hermetia illucens) Larvae: A Meta-Analysis. Recycling 2023, 8, 83. https://doi.org/10.3390/recycling8060083
Zulkifli S, Jayanegara A, Pramudya B, Fahmi MR, Rahmadani M. Alleviation of Selected Environmental Waste through Biodegradation by Black Soldier Fly (Hermetia illucens) Larvae: A Meta-Analysis. Recycling. 2023; 8(6):83. https://doi.org/10.3390/recycling8060083
Chicago/Turabian StyleZulkifli, Sunarto, Anuraga Jayanegara, Bambang Pramudya, Melta Rini Fahmi, and Mardiah Rahmadani. 2023. "Alleviation of Selected Environmental Waste through Biodegradation by Black Soldier Fly (Hermetia illucens) Larvae: A Meta-Analysis" Recycling 8, no. 6: 83. https://doi.org/10.3390/recycling8060083
APA StyleZulkifli, S., Jayanegara, A., Pramudya, B., Fahmi, M. R., & Rahmadani, M. (2023). Alleviation of Selected Environmental Waste through Biodegradation by Black Soldier Fly (Hermetia illucens) Larvae: A Meta-Analysis. Recycling, 8(6), 83. https://doi.org/10.3390/recycling8060083