Study of the Effect of Modification of Asphalt on the Rheological Properties Employing Microwave Radiation—An Aging Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Preparation and Methods
2.3. Instrumentation
3. Results and Discussion
3.1. Use of 0.5% Catalyst as Rheological Modifier of Asphalt
3.2. Use of 1.0% Catalyst as Rheological Modifier of Asphalt
3.3. Marshall Test
3.4. The Conventional Performance
3.5. Field Emission Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Su, P.; Li, M.; You, Z.; Zhao, M. Review on evolution and evaluation of asphalt pavement structures and materials. J. Traffic Transp. Eng. 2020, 7, 573–599. [Google Scholar] [CrossRef]
- Parkash, S. Petroleum Fuels Manufacturing Handbook: Including Specialty Products and Sustainable Manufacturing Techniques; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Owaid, K.A.; Hamdoon, A.A.; Matti, R.R.; Saleh, M.Y.; Abdelzaher, M.A. Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers. Materials 2022, 15, 3744. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J.; Han, Z.; Liu, W. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Constr. Build. Mater. 2018, 168, 893–905. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.J.; Tan, Y.Q.; Liu, Z.Y. Investigating the interactions of the saturate, aromatic, resin, and as-phaltene four fractions in asphalt binders by molecular simulations. Energy Fuels 2015, 29, 112–121. [Google Scholar]
- Abdelzaher, M.A. Performance and hydration characteristic of dark white evolution (DWE) cement composites blended with clay brick powder. Egypt. J. Chem. 2022, 65, 419–427. [Google Scholar] [CrossRef]
- Yao, L.; Leng, Z.; Jiang, J.; Ni, F.; Zhao, Z. Nondestructive prediction of rutting resistance of in-service middle asphalt layer based on gene expression programing. Constr. Build. Mater. 2021, 293, 123481. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Liu, Z. Interlaminar shear fatigue and damage characteristics of asphalt layer for asphalt overlay on rigid pavement. Constr. Build. Mater. 2014, 68, 341–347. [Google Scholar] [CrossRef]
- Wu, S.; Chen, H.; Zhang, J.; Zhang, Z. Effects of interlayer bonding conditions between semi-rigid base layer and asphalt layer on mechanical responses of asphalt pavement structure. Int. J. Pavement Res. Technol. 2017, 10, 274–281. [Google Scholar] [CrossRef]
- Fang, M.; Cerdas, S.F.; Qiu, Y. Numerical determination for optimal location of sub-track asphalt layer in high-speed rails. J. Mod. Transp. 2013, 21, 103–110. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.H.; Park, H.M. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements. Constr. Build. Mater. 2007, 21, 1079–1087. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. [Google Scholar] [CrossRef]
- Mashaan, N.; Chegenizadeh, A.; Nikraz, H. Laboratory Properties of Waste PET Plastic-Modified Asphalt Mixes. Recycling 2021, 6, 49. [Google Scholar] [CrossRef]
- Khan, I.M.; Kabir, S.; Alhussain, M.A.; Almansoor, F.F. Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Eng. 2016, 145, 1557–1564. [Google Scholar] [CrossRef]
- Tantawy, M.A.; El-Roudi, A.M.; Abdalla, E.M.; Abdelzaher, M.A. Fire Resistance of Sewage Sludge Ash Blended Cement Pastes. J. Eng. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Yan, C.; Huang, W.; Lin, P.; Zhang, Y.; Lv, Q. Chemical and rheological evaluation of aging properties of high content SBS polymer modified asphalt. Fuel 2019, 252, 417–426. [Google Scholar] [CrossRef]
- Salih, W.M.; Hamdoon, A.A.; Abeed, F.; Saleh, M.Y.; Abdelzaher, M.A. Polymer Wastes Reinforced the Rheological Properties of Bitumen Composites Pastes. Egypt. J. Chem. 2022, 65, 727–734. [Google Scholar] [CrossRef]
- Leng, Z.; Padhan, R.K.; Sreeram, A. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. J. Clean. Prod. 2018, 180, 682–688. [Google Scholar] [CrossRef]
- Diab, A.; Enieb, M.; Singh, D. Influence of aging on properties of polymer-modified asphalt. Constr. Build. Mater. 2019, 196, 54–65. [Google Scholar] [CrossRef]
- Kumar, S.A.; Veeraragavan, A. Performance based binder type selection using mixed integer programming technique. Constr. Build. Mater. 2010, 24, 2091–2100. [Google Scholar]
- Veeraragavan, A. Rheological and Rutting Characterization of Asphalt Mixes with Modified Binders. J. Test. Eval. 2012, 40, 66–77. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Sahraei, A.; Esmaeeli, M.R. Investigate the effect of using polymeric anti-stripping additives on moisture damage of hot mix asphalt. Eur. J. Environ. Civ. Eng. 2021, 25, 90–103. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Pirbasti, Z.R.; Esmaeili, N. Laboratory investigation of the effect of ABS polymer on moisture susceptibility of asphalt mixtures. Aust. J. Civ. Eng. 2019, 17, 96–109. [Google Scholar] [CrossRef]
- Abandansari, H.F.; Modarres, A. Investigating effects of using nanomaterial on moisture susceptibility of hot-mix asphalt using mechanical and thermodynamic methods. Constr. Build. Mater. 2017, 131, 667–675. [Google Scholar] [CrossRef]
- Pakenari, M.M.; Hamedi, G.H. Investigating the Effective Laboratory Parameters on the Stiffness Modulus and Fatigue Cracking of Warm Mix Asphalt. Int. J. Civ. Eng. 2021, 19, 685–698. [Google Scholar] [CrossRef]
- Kavussi, A.; Qorbani, M.; Khodaii, A.; Haghshenas, H. Moisture susceptibility of warm mix asphalt: A statistical analysis of the laboratory testing results. Constr. Build. Mater. 2014, 52, 511–517. [Google Scholar] [CrossRef]
- Abdelzaher, M.A.; Farahat, E.M.; Abdel-Ghafar, H.M.; Balboul, B.A.; Awad, M.M. Environmental Policy to De-velop a Conceptual Design for the Water–Energy–Food Nexus: A Case Study in Wadi-Dara on the Red Sea Coast. Egypt. Water 2023, 15, 780. [Google Scholar]
- Cheng, H.; Liu, J.; Sun, L.; Liu, L.; Zhang, Y. Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests. Constr. Build. Mater. 2021, 273, 121675. [Google Scholar] [CrossRef]
- Fakhri, M.; Ghanizadeh, A.R.; Omrani, H. Comparison of Fatigue Resistance of HMA and WMA Mixtures Modified by SBS. In Proceedings of the 2nd Conference of Transportation Research Group of India (2nd CTRG), Utter Pradesh, India, 12–15 December 2013. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Cheng, G.; Zhang, K. The deterioration and performance improvement of long-term mechanical properties of warmmix asphalt mixtures under special environmental conditions. Constr. Build. Mater. 2017, 135, 622–631. [Google Scholar] [CrossRef]
- Hasan, H.A.; Mohammed, L.H.A.; Masood, L.G.G. Effect of rubber tire on behaviour of subgrade expansive Iraqi soils. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012066. [Google Scholar] [CrossRef]
- Al-Hdabi, A.; Al Nageim, H. Performance of Half Warm Rolled Asphalt mixtures. Constr. Build. Mater. 2018, 162, 48–56. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Asphalt and Asphalt Mixtures for Highway Engineering. China Communications Press: Beijing, China, 2011.
- Ma, X.; Li, Q.; Cui, Y.-C.; Ni, A.-Q. Performance of porous asphalt mixture with various additives. Int. J. Pavement Eng. 2018, 19, 355–361. [Google Scholar] [CrossRef]
- ASTM, A. Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Issa, I.S. Modification of Asphalt by Diols. J. Educ. Sci. 2008, 21, 49–53. [Google Scholar] [CrossRef]
- American Society for Testing and Materials; Committee C-1 on Cement. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens); ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Liu, H.; Fu, L.; Jiao, Y.; Tao, J.; Wang, X. Short-Term Aging Effect on Properties of Sustainable Pavement Asphalts Modified by Waste Rubber and Diatomite. Sustainability 2017, 9, 996. [Google Scholar] [CrossRef]
- Speight, J.G. Asphalt Materials Science and Technology; Butterworth-Heinemann: Oxford, UK, 2016; pp. 437–474. [Google Scholar]
- Mazumder, M.; Kim, H.; Lee, S.J. Performance properties of polymer modified asphalt binders containing wax additives. Int. J. Pavement Res. Technol. 2016, 9, 128–139. [Google Scholar] [CrossRef]
- Kumar, P.; Chandra, S.; Bose, S. Strength characteristics of polymer modified mixes. Int. J. Pavement Eng. 2006, 7, 63–71. [Google Scholar] [CrossRef]
- Heydari, S.; Hajimohammadi, A.; Javadi, N.H.S.; Khalili, N. The use of plastic waste in asphalt: A critical review on asphalt mix design and Marshall properties. Constr. Build. Mater. 2021, 309, 125185. [Google Scholar] [CrossRef]
- Abdelzaher, A.M. Experiential investigation on the effect of heavy fuel oil substitution by high sulfur petcoke on the physico-mechanical features and microstructure of white cement composites. Eng. Res. Express 2021, 3, 015028. [Google Scholar] [CrossRef]
- Saleh, H.; Al-Kahlidi, M.M.A.; Abulridha, H.A.; Banoon, S.R.; Abdelzaher, M.A. Current Situation and Future Prospects for Plastic Waste in Maysan Governorate: Effects and Treatment During the COVID-19 Pandemic. Egypt. J. Chem. 2021, 64, 4449–4460. [Google Scholar] [CrossRef]
- Abdelzaher, M.A.; Shehata, N. Hydration and synergistic features of nanosilica-blended high alkaline white cement pastes composites. Appl. Nanosci. 2022, 12, 1731–1746. [Google Scholar] [CrossRef]
- Goli, A.; Rout, B.; Cyril, T.; Govindaraj, V. Evaluation of Mechanical Characteristics and Plastic Coating Efficiency in Plastic-Modified Asphalt Mixes. Int. J. Pavement Res. Technol. 2022, 16, 693–704. [Google Scholar] [CrossRef]
- Ogundipe, O.M. The Use of Polyethylene Terephthalate Waste for Modifying Asphalt Concrete Using the Marshall Test. Slovak J. Civ. Eng. 2019, 27, 9–15. [Google Scholar] [CrossRef]
- Kunanusont, N.; Sangpetngam, B.; Somwangthanaroj, A. Asphalt Incorporation with Ethylene Vinyl Acetate (EVA) Copolymer and Natural Rubber (NR) Thermoplastic Vulcanizates (TPVs): Effects of TPV Gel Content on Physical and Rheo-logical Properties. Polymers 2021, 13, 1397. [Google Scholar] [CrossRef]
- Abdelzaher, M.A.; Hamouda, A.S.; Ismail, I.M.; El-Sheikh, M.A. Nano titania reinforced limestone cement: Phys-ico-mechanical investgation. In Key Engineering Materials; Trans Tech Publications Ltd.: Bach, Switzerland, 2018; Volume 786, pp. 248–257. [Google Scholar]
- Balboul, B.A.; Abdelzaher, M.; Hamouda, A.S.; Zaki, A.H. Nano titania combined with micro silica reinforced limestone cement: Physico-mechanical investigation. Egypt. J. Chem. 2019, 62, 1105–1115. [Google Scholar]
- Abdelzaher, M.A. Sustainable development goals for industry, innovation, and infrastructure: Demolition waste incorporated with nanoplastic waste enhanced the physicomechanical properties of white cement paste composites. Appl. Nanosci. 2023, 13, 5521–5536. [Google Scholar] [CrossRef] [PubMed]
- Elkhouly, H.I.; Abdelzaher, M.A.; El-Kattan, I.M. Experimental and Modeling Investigation of Physicomechanical Properties and Firing Resistivity of Cement Pastes Incorporation of Micro-Date Seed Waste. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 2809–2821. [Google Scholar] [CrossRef]
Rheological Properties | Minimum | Maximum | Mean |
---|---|---|---|
Softening point (°C) | 51 | 60 | 55 |
Penetration (100 gm, 5 s, 25 °C) | 41 | 47 | 44 |
Degree of Ductility (cm, 25 °C) | 10 | - | 10 |
Specification | Anhydrous Aluminium Chloride (AlCl3) |
---|---|
Molecular weight | 133.34 g/mol |
Appearance (Color) | White |
Features | Anhydrous, powder, 99.99% trace metals basis |
Purity | 95%. |
Rheological Properties | Qayara Crude Asphalt | The Standard Testing Measurements (JTG E20,2011) [33] | ||
---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |
Softening point (%) | 51 | 60 | 55 | 65 |
Penetration (100 gm. 5 s. 25 °C) | 41 | 47 | 20 | 40 |
Degree of Ductility (cm. 25 °C) | 10 | - | 15 | - |
Mix Proportions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mix Title | B0 | BR-1 | BR-2 | BR-3 | BR-4 | BR-5 | |||||
Asphalt by weight (%) | 100 | 98.5 | 98.0 | 97.5 | 97.0 | 96.5 | 96.0 | 95.5 | 95.0 | 94.5 | 94.0 |
Spent Rubber Tires (SRT) by weight (%) | - | 1.0 | 1.0 | 2.0 | 2.0 | 3.0 | 3.0 | 4.0 | 4.0 | 5.0 | 5.0 |
Anhydrous Aluminum Chloride | - | 0.5 | 1.0 | 0.5 | 1.0 | 0.5 | 1.0 | 0.5 | 1.0 | 0.5 | 1.0 |
Time, min. | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | |
15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | |
Temp.°C | 360 °C |
Mix Title | Conventional Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ductility (cm) | Softening Point | Penetration | Penetration Index | Asphaltens % | ||||||
AlCl3 | 0.5% | 1.0% | 0.5% | 1.0% | 0.5% | 1.0% | 0.5% | 1.0% | 0.5% | 1.0% |
AS | >150 | 51 | 51 | 42.3 | 42.3 | −1.461 | −1.461 | 20.1 | 20.1 | |
BR-1 | >150 | 53 | 53 | 41.5 | 41.9 | −0.670 | −0.888 | 24.1 | 24.5 | |
BR-2 | >150 | 56 | 58 | 42.2 | 43.2 | −0.655 | −0.915 | 26.6 | 26.9 | |
BR-3 | >150 | 56 | 59 | 42.9 | 44.1 | −0.631 | +0.223 | 28.1 | 30.2 | |
BR-4 | >150 | 58 | 59 | 43.8 | 44.8 | −0.596 | +0.447 | 28.5 | 32.5 | |
BR-5 | >150 | 59 | 63 | 44.7 | 46.2 | −0.337 | +0.673 | 29.2 | 33.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owaid, K.A.; Ghazal, R.Y.; Abdelzaher, M.A. Study of the Effect of Modification of Asphalt on the Rheological Properties Employing Microwave Radiation—An Aging Study. Recycling 2023, 8, 65. https://doi.org/10.3390/recycling8050065
Owaid KA, Ghazal RY, Abdelzaher MA. Study of the Effect of Modification of Asphalt on the Rheological Properties Employing Microwave Radiation—An Aging Study. Recycling. 2023; 8(5):65. https://doi.org/10.3390/recycling8050065
Chicago/Turabian StyleOwaid, Khalid Ahmed, Raghed Y. Ghazal, and M. A. Abdelzaher. 2023. "Study of the Effect of Modification of Asphalt on the Rheological Properties Employing Microwave Radiation—An Aging Study" Recycling 8, no. 5: 65. https://doi.org/10.3390/recycling8050065
APA StyleOwaid, K. A., Ghazal, R. Y., & Abdelzaher, M. A. (2023). Study of the Effect of Modification of Asphalt on the Rheological Properties Employing Microwave Radiation—An Aging Study. Recycling, 8(5), 65. https://doi.org/10.3390/recycling8050065