Identification and Evaluation of (Non-)Intentionally Added Substances in Post-Consumer Recyclates and Their Toxicological Classification
Abstract
:1. Introduction
2. Results
2.1. Sample Screening for Post-Consumer Substances
2.1.1. Extract Screening
2.1.2. Comparison between Virgin Base Polymer Substances and Post-Consumer Substances
2.1.3. Analysis of the Partitioning Coefficient
2.1.4. Analysis of the Toxicological Classifications
2.1.5. Comparison of the Polymers with PET
2.2. Origin of the Most Frequently Detected Substances
2.3. Quantification of Additives
2.4. Headspace Quantification of Limonene
3. Discussion
3.1. Chemical Differences between Polymers and Their Substances
3.2. Origin of the Most Frequently Detected Substances, Additives and Limonene
3.3. Recycling Potential and Recyclate Preparation
3.4. Critical Evaluation of the Methodology and Outlook
4. Materials and Methods
4.1. Sample Description and Analysis
4.1.1. Sample Collection
4.1.2. Sample Preparation and Analysis
4.2. Qualitative Evaluation of Chemicals in Post-Consumer Recyclates
4.3. Classification of Chemicals
4.3.1. In Silico Characterization: Cramer Classification and (Non)Genotoxic Carcinogenicity Alert
4.3.2. Determination of Log P Values
4.4. Data Evaluation
4.4.1. Calculation of Diversity Indices
4.4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament. Plastic Waste and Recycling in the EU: Facts and Figures. 2021. Available online: https://www.europarl.europa.eu/pdfs/news/expert/2018/12/story/20181212STO21610/20181212STO21610_en.pdf (accessed on 18 August 2022).
- PlasticsEurope. Plastics–The Facts 2017-An Analysis of European Plastics Production, Demand and Waste Data. 2017. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2017-Plastics-the-facts.pdf (accessed on 18 August 2022).
- Barnes, S.J. Understanding plastics pollution: The role of economic development and technological research. Environ. Pollut. 2019, 249, 812–821. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- Geueke, B. Dossier–Non-Intentionally Added Substances (NIAS); Food Packaging Forum: Zurich, Switzerland, 2018. [Google Scholar] [CrossRef]
- Eurostat. More than 40% of EU Plastic Packaging Waste Recycled. 2021. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210113-1 (accessed on 18 August 2022).
- Briard, M.; O’ Brien, S.; Pelsy, F. A European Strategy for Plastics in the Circular Economy Local and Regional Dimension; Milieu Ltd.: Bruxelles, Belgium, 2018; ISBN 978-92-895-0964-0. [Google Scholar]
- Foschi, E.; Bonoli, A. The Commitment of Packaging Industry in the Framework of the European Strategy for Plastics in a Circular Economy. Adm. Sci. 2019, 9, 18. [Google Scholar] [CrossRef]
- Stahel, W.R. The circular economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef]
- Muncke, J.; Backhaus, T.; Geueke, B.; Maffini, M.V.; Martin, O.V.; Myers, J.P.; Soto, A.M.; Trasande, L.; Trier, X.; Scheringer, M. Scientific Challenges in the Risk Assessment of Food Contact Materials. Environ. Health Perspect. 2017, 125, 95001. [Google Scholar] [CrossRef]
- Pivnenko, K.; Eriksen, M.K.; Martín-Fernández, J.A.; Eriksson, E.; Astrup, T.F. Recycling of plastic waste: Presence of phthalates in plastics from households and industry. Waste Manag. 2016, 54, 44–52. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food. EFS2 2011, 9, 2184. [Google Scholar] [CrossRef]
- Triantafyllou, V.; Karamani, A.; Akrida-Demertzi, K.; Demertzis, P. Studies on the usability of recycled PET for food packaging applications. Eur. Food Res. Technol. 2002, 215, 243–248. [Google Scholar] [CrossRef]
- Welle, F. Twenty years of PET bottle to bottle recycling—An overview. Resour. Conserv. Recycl. 2011, 55, 865–875. [Google Scholar] [CrossRef]
- Bradley, E.L.; Coulier, L. An Investigation into the Reaction and Breakdown Products from Starting Substances Used to Produce Food Contact Plastics; Report FD 07/01; Central Science Laboratory: London, UK, 2007. [Google Scholar]
- Horodytska, O.; Cabanes, A.; Fullana, A. Non-intentionally added substances (NIAS) in recycled plastics. Chemosphere 2020, 251, 126373. [Google Scholar] [CrossRef]
- Kato, L.S.; Conte-Junior, C.A. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers 2021, 13, 2077. [Google Scholar] [CrossRef]
- Susann Kaiser. Bestimmung von Extraktiv- und Migrationsstoffen aus Pharmazeutischen Kunststoffbehältnissen. [Doctoral Dissertation, Freie Universität Berlin]. 2010. Available online: https://refubium.fu-berlin.de/bitstream/handle/fub188/697/Dissertation_Susann_Kaiser.pdf?sequence=1&isAllowed=y (accessed on 18 August 2022).
- Vulic, I.; Vitarelli, G.; Zenner, J.M. Structure-property relationships: Phenolic antioxidants with high efficacy and low color contribution. Macromol. Symp. 2001, 176, 1–16. [Google Scholar] [CrossRef]
- Shanina, E.L.; Zaikov, G.E. Some Peculiarities of Phenolic Stabilizers’ Consumption and the Role of their Transformation Products in the Oxidation Process. Int. J. Polym. Mater. 1997, 38, 99–128. [Google Scholar] [CrossRef]
- Brigati, G.; Lucarini, M.; Mugnaini, V.; Pedulli, G.F. Determination of the substituent effect on the O-H bond dissociation enthalpies of phenolic antioxidants by the EPR radical equilibration technique. J. Org. Chem. 2002, 67, 4828–4832. [Google Scholar] [CrossRef]
- Zweifel, H. Stabilization of Polymeric Materials; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-80305-5. [Google Scholar]
- Klemchuk, P.P.; Gande, M.E. Stabilization mechanisms of hindered amines. Makromol. Chem. Macromol. Symp. 1989, 28, 117–144. [Google Scholar] [CrossRef]
- Carrero-Carralero, C.; Escobar-Arnanz, J.; Ros, M.; Jiménez-Falcao, S.; Sanz, M.L.; Ramos, L. An untargeted evaluation of the volatile and semi-volatile compounds migrating into food simulants from polypropylene food containers by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Talanta 2019, 195, 800–806. [Google Scholar] [CrossRef]
- Nerin, C.; Alfaro, P.; Aznar, M.; Domeño, C. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Anal. Chim. Acta 2013, 775, 14–24. [Google Scholar] [CrossRef]
- Zimmermann, L.; Dierkes, G.; Ternes, T.A.; Völker, C.; Wagner, M. Benchmarking the in Vitro Toxicity and Chemical Composition of Plastic Consumer Products. Environ. Sci. Technol. 2019, 53, 11467–11477. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the safety assessment of the processes ‘Biffa Polymers’ and ‘CLRrHDPE’ used to recycle high-density polyethylene bottles for use as food contact material. EFS2 2015, 13, 4016. [Google Scholar] [CrossRef]
- Cooper, I.; Tice, P.A. Migration studies on fatty acid amide slip additives from plastics into food simulants. Food Addit. Contam. 1995, 12, 235–244. [Google Scholar] [CrossRef]
- Lee, H.; Shim, W.J.; Kwon, J.-H. Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci. Total Environ. 2014, 470–471, 1545–1552. [Google Scholar] [CrossRef]
- Arnot, J.A.; Gobas, F.A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Meylan, W.M.; Howard, P.H.; Boethling, R.S.; Aronson, D.; Printup, H.; Gouchie, S. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ. Toxicol Chem 1999, 18, 664–672. [Google Scholar] [CrossRef]
- de Somer, T.; Roosen, M.; Harinck, L.; van Geem, K.M.; de Meester, S. Removal of volatile components from plastic waste in liquid media: Effect of temperature and particle size. Resour. Conserv. Recycl. 2022, 182, 106267. [Google Scholar] [CrossRef]
- Beriot, N.; Zomer, P.; Zornoza, R.; Geissen, V. A laboratory comparison of the interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ 2020, 8, e9876. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC). EFS2 2012, 10, 2750. [Google Scholar] [CrossRef]
- More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Hougaard Bennekou, S.; Koutsoumanis, K.P.; Machera, K.; Naegeli, H.; et al. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFS2 2019, 17, e05708. [Google Scholar] [CrossRef]
- EFSA; WHO. Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. EFS3 2016, 13, 1006E. [Google Scholar] [CrossRef]
- Cramer, G.M.; Ford, R.A.; Hall, R.L. Estimation of toxic hazard—A decision tree approach. Food Cosmet. Toxicol. 1976, 16, 255–276. [Google Scholar] [CrossRef]
- Lapenna, S.; Worth, A. Analysis of the Cramer Classification Scheme for Oral Systemic Toxicity: Implications for Its Implementation in Toxtree; JRC Scientific and Technical Report EUR; Publications Office of the European Union: Luxembourg, 2011; Volume 24898. [Google Scholar]
- Franz, R.; Welle, F. Recycling of Post-Consumer Packaging Materials into New Food Packaging Applications—Critical Review of the European Approach and Future Perspectives. Sustainability 2022, 14, 824. [Google Scholar] [CrossRef]
- Cecon, V.S.; Da Silva, P.F.; Curtzwiler, G.W.; Vorst, K.L. The challenges in recycling post-consumer polyolefins for food contact applications: A review. Resour. Conserv. Recycl. 2021, 167, 105422. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Franz, R.; Mauer, A.; Welle, F. European survey on post-consumer poly(ethylene terephthalate) (PET) materials to determine contamination levels and maximum consumer exposure from food packages made from recycled PET. Food Addit. Contam. 2004, 21, 265–286. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
- Castle, L.; Mayo, A.; Crews, C.; Gilbert, J. Migration of Poly(ethylene terephthalate) (PET) Oligomers from PET Plastics into Foods during Microwave and Conventional Cooking and into Bottled Beverages. J. Food Prot. 1989, 52, 337–342. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Welle, F. A new method for the prediction of diffusion coefficients in poly(ethylene terephthalate). J. Appl. Polym. Sci. 2013, 129, 1845–1851. [Google Scholar] [CrossRef]
- Franz, R.; Welle, F. Contamination Levels in Recollected PET Bottles from Non-Food Applications and their Impact on the Safety of Recycled PET for Food Contact. Molecules 2020, 25, 4998. [Google Scholar] [CrossRef]
- Piringer, O.G.; Baner, A.L. Plastic Packaging; Wiley: Hoboken, NJ, USA, 2008; ISBN 9783527314553. [Google Scholar]
- Welle, F. Is PET bottle-to-bottle recycling safe? Evaluation of post-consumer recycling processes according to the EFSA guidelines. Resour. Conserv. Recycl. 2013, 73, 41–45. [Google Scholar] [CrossRef]
- Camacho, W.; Karlsson, S. Quality-determination of recycled plastic packaging waste by identification of contaminants by GC–MS after microwave assisted extraction (MAE). Polym. Degrad. Stab. 2000, 71, 123–134. [Google Scholar] [CrossRef]
- Dole, P.; Feigenbaum, A.E.; De La Cruz, C.; Pastorelli, S.; Paseiro, P.; Hankemeier, T.; Voulzatis, Y.; Aucejo, S.; Saillard, P.; Papaspyrides, C. Typical diffusion behaviour in packaging polymers–application to functional barriers. Food Addit. Contam. 2006, 23, 202–211. [Google Scholar] [CrossRef]
- Ewender, J.; Welle, F. Determination of the activation energies of diffusion of organic molecules in poly(ethylene terephthalate). J. Appl. Polym. Sci. 2013, 128, 3885–3892. [Google Scholar] [CrossRef]
- Galmán Graíño, S.; Sendón, R.; López Hernández, J.; Rodríguez-Bernaldo de Quirós, A. GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers. Polymers 2018, 10, 802. [Google Scholar] [CrossRef]
- Koszinowski, J. Diffusion and solubility of n -alkanes in polyolefines. J. Appl. Polym. Sci. 1986, 31, 1805–1826. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, C.; Zhong, H.; Chen, X.; Chen, R.; Yam, K.L. Effects of Ultraviolet (UV) on Degradation of Irgafos 168 and Migration of Its Degradation Products from Polypropylene Films. J. Agric. Food Chem. 2016, 64, 7866–7873. [Google Scholar] [CrossRef]
- Shi, J.; Xu, C.; Xiang, L.; Chen, J.; Cai, Z. Tris(2,4-di-tert-butylphenyl)phosphate: An Unexpected Abundant Toxic Pollutant Found in PM2.5. Environ. Sci. Technol. 2020, 54, 10570–10576. [Google Scholar] [CrossRef]
- Dopico-García, M.S.; López-Vilariño, J.M.; González-Rodríguez, M.V. Determination of antioxidant migration levels from low-density polyethylene films into food simulants. J. Chromatogr. A 2003, 1018, 53–62. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0010&from=EN (accessed on 2 January 2023).
- Muncke, J. Tackling the toxics in plastics packaging. PLoS Biol. 2021, 19, e3000961. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:en:PDF (accessed on 2 January 2023).
- Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on Flavourings and Certain Food Ingredients with Flavouring Properties for Use in and on Foods and Amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008R1334-20180524&from=EN (accessed on 2 January 2023).
- GESTIS-Stoffdatenbank: Dipetene. Available online: https://gestis.dguv.de/data?name=013470&lang=en (accessed on 18 August 2022).
- Frese, C. Stabilisierung von (R)-(+)-Limonen in Einer Phospholipid Nanoemulsion Mittels Hochdruckhomogenisation. [Doctoral Dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn]. 2008. Available online: https://bonndoc.ulb.uni-bonn.de/xmlui/bitstream/handle/20.500.11811/3269/1619.pdf?se (accessed on 18 August 2022).
- Breitmaier, E. Terpene: Aromen, Düfte, Pharmaka, Pheromone, 2, Vollstandig Uberarbeitete und Erweiterte Auflage; Wiley-VCH Verlag: Weinheim, Germany, 2005; ISBN 978-3-527-31498-0. [Google Scholar]
- Popken, A.M.; Dechent, H.M.; Gürster, D. Investigations on the Origin of Carvone in Orange Juices as an Off-Flavour Component. Fruit Process. 1999, 9, 338–341. [Google Scholar]
- van Thoden Velzen, E.U.; Brouwer, M.T.; Stärker, C.; Welle, F. Effect of recycled content and rPET quality on the properties of PET bottles, part II: Migration. Packag. Technol. Sci. 2020, 33, 359–371. [Google Scholar] [CrossRef]
- Brouwer, M.T.; Alvarado Chacon, F.; van Thoden Velzen, E.U. Effect of recycled content and rPET quality on the properties of PET bottles, part III: Modelling of repetitive recycling. Packag. Technol. Sci. 2020, 33, 373–383. [Google Scholar] [CrossRef]
- PRO EUROPE Packaging Recovery Organisation Europe. 2023. Available online: https://www.pro-e.org (accessed on 2 January 2023).
- Dornic, N.; Roudot, A.C.; Batardière, A.; Nedelec, A.S.; Bourgeois, P.; Hornez, N.; Le Caer, F.; Ficheux, A.S. Aggregate exposure to common fragrance compounds: Comparison of the contribution of essential oils and cosmetics using probabilistic methods and the example of limonene. Food Chem. Toxicol. 2018, 116, 77–85. [Google Scholar] [CrossRef]
- Franz, R.; Welle, F. Migration measurement and modelling from poly(ethylene terephthalate) (PET) into soft drinks and fruit juices in comparison with food simulants. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1033–1046. [Google Scholar] [CrossRef]
- Pennarun, P.Y.; Dole, P.; Feigenbaum, A. Functional barriers in PET recycled bottles. Part I. Determination of diffusion coefficients in bioriented PET with and without contact with food simulants. J. Appl. Polym. Sci. 2004, 92, 2845–2858. [Google Scholar] [CrossRef]
- Endo, S.; Koelmans, A.A. Sorption of Hydrophobic Organic Compounds to Plastics in the Marine Environment: Equilibrium. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Takada, H., Karapanagioti, H.K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 185–204. ISBN 978-3-319-95566-7. [Google Scholar]
- Tongchat, C.; Franz, R. Determination of Partition Coefficients of Migrants between Layers Used in Multilayer Multi-Material Structures Intended for Food Contact. Bank (HSDB). 2012. Available online: https://www.ivv.fraunhofer.de/content/dam/ivv/en/documents/Forschungsfelder/Produktsicherheit-und-analytik/Determination_of_partition_coefficients.pdf (accessed on 21 June 2021).
- Li, B.; Wang, Z.-W.; Bai, Y.-H. Determination of the partition and diffusion coefficients of five chemical additives from polyethylene terephthalate material in contact with food simulants. Food Packag. Shelf Life 2019, 21, 100332. [Google Scholar] [CrossRef]
- Industrievereinigung Für Lebensmitteltechnologie Und Verpackung e.V. PolyCycle: Development of a Test Strategy for the Comprehensive Safety Assessment of Plastic Recyclates. 2020. Available online: https://www.ivlv.org/en/project/polycycle/ (accessed on 21 June 2021).
- Severin, I.; Souton, E.; Dahbi, L.; Chagnon, M.C. Use of bioassays to assess hazard of food contact material extracts: State of the art. Food Chem. Toxicol. 2017, 105, 429–447. [Google Scholar] [CrossRef]
- Groh, K.J.; Muncke, J. In Vitro Toxicity Testing of Food Contact Materials: State-of-the-Art and Future Challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1123–1150. [Google Scholar] [CrossRef]
- Maisanaba, S.; Guzmán-Guillén, R.; Puerto, M.; Gutiérrez-Praena, D.; Ortuño, N.; Jos, Á. In vitro toxicity evaluation of new silane-modified clays and the migration extract from a derived polymer-clay nanocomposite intended to food packaging applications. J. Hazard. Mater. 2018, 341, 313–320. [Google Scholar] [CrossRef]
- Schilter, B.; Burnett, K.; Eskes, C.; Geurts, L.; Jacquet, M.; Kirchnawy, C.; Oldring, P.; Pieper, G.; Pinter, E.; Tacker, M.; et al. Value and limitation of in vitro bioassays to support the application of the threshold of toxicological concern to prioritise unidentified chemicals in food contact materials. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1903–1936. [Google Scholar] [CrossRef]
- Misra, B.B.; Bassey, E.; Olivier, M. Comparison of a GC-Orbitrap-MS with Parallel GC-FID Capabilities for Metabolomics of Human Serum. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Benignia, R.; Bossaa, C.; Jeliazkovab, N. The Benigni/Bossa Rulebase for Mutagenicity and Carcinogenicity–A Module of Toxtree; JRC Scientific and Technical Report EUR; Publications Office of the European Union: Luxembourg, 2008; Volume 23241. [Google Scholar]
HDPE | LDPE | PE | PET | PP | PS | |
---|---|---|---|---|---|---|
Shannon index | 3.20 | 3.67 | 2.92 | 0.90 | 4.02 | 3.41 |
Simpson index | 0.95 | 0.97 | 0.98 | 0.56 | 0.97 | 0.96 |
Evenness | 0.82 | 0.90 | 0.76 | 0.62 | 0.88 | 0.91 |
p-Values | |||||
---|---|---|---|---|---|
HDPE | LDPE | PE | PP | PS | |
Cramer class > I | 0.404 | 0.002 ** | 0.002 ** | 0.003 ** | 0.580 |
gtc alert | 1.000 | <0.001 *** | 0.006 ** | 0.002 ** | 1.000 |
ngtc alert | 1.000 | 1.000 | 0.213 | 0.530 | 1.000 |
Virgin base polymer substances | 1.000 | 1.000 | 0.840 | 1.000 | 1.000 |
Log P | 0.009 ** | 0.002 ** | 0.001 *** | 0.017 * | 0.777 |
Substance (mol. Weight [g/mol])-CAS No. | Polymer | Cramer Class | Gtc Alerts | Ngtc Alerts | Possible Type of Substance | Possible Origin |
---|---|---|---|---|---|---|
Oxidized Irgafos 168 (662)-95906-11-9 | HDPE, LDPE, PE, PP, PS | III | - | - | VBP | Additive |
Irgafos 168 (646)-31570-04-4 | HDPE, LDPE, PE, PP | III | - | - | VBP | Additive |
n-Tetracosane (338)-646-31-1 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
n-Octadecane (254)-593-45-3 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
n-Eicosane (282)-112-95-8 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
n-Docosane (310)-629-97-0 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
n-Hexadecane (226)-544-76-3 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
n-Tetradecane (198)-629-59-4 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
n-Hexadecanoic acid (256)-57-10-3 | LDPE, PP, PS | I | - | - | PCM | Packed content |
Oleic Acid (282)-112-80-1 | LDPE, PE, PP, PS | I | - | - | PCM | Packed content |
n-Hexacosane (366)-630-01-3 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
Di-(ethylhexyl)-isophthalat (390)-137-89-3 | LDPE, PP, PS | I | - | + | PCM | Packed content |
Octadecanoic acid (284)-57-11-4 | LDPE, PP, PS | I | - | - | PCM | Packed content |
1-Docosene (308)-1599-67-3 | HDPE, LDPE, PE, PP | I | - | - | VBP | Polymer |
1-Octadecene (252)-112-88-9 | HDPE, LDPE, PE | I | - | - | VBP | Polymer |
3-Eicosene, (E) (280)-74685-33-9 | HDPE, LDPE, PE | I | - | - | PCM | Packed content |
n-Pentacosane (352)-629-99-2 | HDPE, LDPE, PE, PP | I | - | - | PCM | Packed content |
1,3-Diphenylpropane (196)-1081-75-0 | PS | III | - | - | PCM | Packed content |
1,1′-(2-methyl-2-(phenythio) cyclopropylidene) bis-benzene (316)-56728-02-0 | PP, PS | III | - | - | PCM | Packed content |
n-Tetracosene (336)-10192-32-2 | HDPE, LDPE | I | - | - | VBP | Polymer |
trans-(2,3-Diphenylcyclopropyl) methyl phenylsulfoxide (332)-131758-71-9 | PE, PP, PS | III | - | - | PCM | Packed content |
Isopropyl Palmitate (298)-142-91-6 | HDPE, LDPE, PE, PP | I | - | - | PCM | Packed content |
3-(1-(4-Cyano-1,2,3,4-tetrahydronaphthyl)) propanenitrile (210)-57964-40-6 | PP, PS | III | - | - | PCM | Packed content |
2-(1-(4-Cyano-1,2,3,4-tetrahydronaphthyl)) propanenitrile (210)-57964-39-3 | PP, PS | III | - | - | PCM | Packed content |
(2,2) Paracyclophane (208)-1633-22-3 | PS | III | - | - | PCM | Packed content |
Isopropyl Myristate (270)-110-27-0 | HDPE, LDPE, PE, PP | I | - | - | PCM | Packed content |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rung, C.; Welle, F.; Gruner, A.; Springer, A.; Steinmetz, Z.; Munoz, K. Identification and Evaluation of (Non-)Intentionally Added Substances in Post-Consumer Recyclates and Their Toxicological Classification. Recycling 2023, 8, 24. https://doi.org/10.3390/recycling8010024
Rung C, Welle F, Gruner A, Springer A, Steinmetz Z, Munoz K. Identification and Evaluation of (Non-)Intentionally Added Substances in Post-Consumer Recyclates and Their Toxicological Classification. Recycling. 2023; 8(1):24. https://doi.org/10.3390/recycling8010024
Chicago/Turabian StyleRung, Christian, Frank Welle, Anita Gruner, Arielle Springer, Zacharias Steinmetz, and Katherine Munoz. 2023. "Identification and Evaluation of (Non-)Intentionally Added Substances in Post-Consumer Recyclates and Their Toxicological Classification" Recycling 8, no. 1: 24. https://doi.org/10.3390/recycling8010024
APA StyleRung, C., Welle, F., Gruner, A., Springer, A., Steinmetz, Z., & Munoz, K. (2023). Identification and Evaluation of (Non-)Intentionally Added Substances in Post-Consumer Recyclates and Their Toxicological Classification. Recycling, 8(1), 24. https://doi.org/10.3390/recycling8010024