A Review on Synthesis of Mullite Ceramics from Industrial Wastes
Abstract
:1. Introduction
2. Synthesis of Mullite Ceramics
2.1. Starting Materials
2.2. Sintering Temperature
2.3. Sintering Aids–Additives
3. Mechanical Strength
4. Thermal Expansion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schneider, H.; Komarneni, S. Mullite; Wiley VCH: Weinheim, Germany, 2005; p. 241. [Google Scholar]
- Bowen, N.L.; Greig, J.W. The system: Al2O3∙SiO2. J. Am. Ceram. Soc. 1924, 7, 238–254. [Google Scholar] [CrossRef]
- Ismail, M.G.M.U.; Nakai, Z.; Minegishi, K. Synthesis of mullite powder and its characteristics. Int. J. High Technol. Ceram. 1986, 2, 123–134. [Google Scholar] [CrossRef]
- Romero, A.R.; Elsayed, H.; Bernardo, E. Highly porous mullite ceramics from engineered alkali activated suspensions. J. Am. Ceram. Soc. 2018, 101, 1036–1041. [Google Scholar] [CrossRef]
- Ribeiro, M.J.; Labrincha, J.A. Properties of sintered mullite and cordierite pressed bodies manufactured using Al-rich anodising sludge. Ceram. Int. 2008, 34, 593–597. [Google Scholar] [CrossRef]
- Ribeiro, M.J.; Tulyagavov, D.U.; Ferreira, J.M.; Labrincha, J.A. High-temperature mullite dissolution in ceramic bodies derived from Al-rich sludge. J. Eur. Ceram. Soc. 2005, 25, 703–710. [Google Scholar] [CrossRef]
- Francis, A.; Vilminot, S. Crystallisation kinetics of mullite glass-ceramics obtained from alumina—Silica wastes. Int. J. Sustain. Eng. 2013, 6, 74–81. [Google Scholar] [CrossRef]
- Bocardo, J.C.E.; Torres, J.T. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram. Int. 2009, 35, 921–924. [Google Scholar]
- Suriyanarayanan, N.; Kannannithin, K.V.; Bernardo, E. Mullite glass ceramic production from coal ash and alumina by high-temperature plasma. J. Non-Oxide Glasses 2009, 1, 247–260. [Google Scholar]
- Jung, J.S.; Park, H.C. Mullite ceramics derived from coal fly ash. J. Mater. Sci. Lett. 2001, 20, 1089–1091. [Google Scholar] [CrossRef]
- Yang, T.Y.; Ji, H.B.; Yoon, S.Y.; Kim, B.K.; Park, H.C. Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resour. Conserv. Recycl. 2010, 54, 816–820. [Google Scholar] [CrossRef]
- Li, S.; Du, H.; Guo, A.; Xu, H.; Yang, D. Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body. Ceram. Int. 2012, 38, 1027–1032. [Google Scholar] [CrossRef]
- Dong, Y.; Diwu, J.; Feng, X.; Feng, X.; Liu, X.; Meng, G. Phase evolution and sintering characteristics of porous mullite ceramics produced from the flyash-Al(OH)3 coating powders. J. Alloys Compd. 2008, 460, 651–657. [Google Scholar] [CrossRef]
- Tan, H. Preparation of mullite whiskers from coal fly ash using sodium sulfate flux. Int. J. Miner. Process. 2011, 100, 188–189. [Google Scholar] [CrossRef]
- Park, Y.M.; Yang, T.Y.; Yoon, S.Y.; Stevens, R.; Park, H.C. Mullite whiskers derived from coal fly ash. Mater. Sci. Eng. A 2007, 455, 518–522. [Google Scholar] [CrossRef]
- Choo, T.F.; Salleh, M.A.M.; Kok, K.Y.; Matori, K.A. Mineralogy and thermal expansion study of mullite-based ceramics synthesized from coal fly ash and aluminum dross industrial wastes. Ceram. Int. 2019, 45, 884–890. [Google Scholar]
- Li, J.; Ma, H.; Huang, W. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. J. Hazard. Mater. 2009, 166, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhou, J.; Lin, B.; Wang, Y.; Wang, S.; Miao, L.; Lang, Y.; Liu, X.; Meng, G. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. J. Hazard. Mater. 2009, 172, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Dong, Y.; Hampshire, S.; Cerneaux, S.; Winnubst, L. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance. J. Eur. Ceram. Soc. 2015, 35, 711–721. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, Y.; Li, L.; Liu, J.; You, S. Fabrication of mullite-whisker-structured porous. RSC Adv. 2015, 5, 11163–11174. [Google Scholar] [CrossRef]
- Cao, J.; Dong, X.; Li, L.; Dong, Y.; Hampshire, S. Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity. J. Eur. Ceram. Soc. 2014, 34, 3181–3194. [Google Scholar] [CrossRef]
- Yugeswaran, S.; Ananthapadmanabhan, P.V.; Kobayashi, A.; Lusvarghi, L. Transferred arc plasma processed mullite from coal ash and bauxite. Ceram. Int. 2011, 37, 3437–3444. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Zhou, J.; Ji, Z.; Wang, J.; Meng, G. Sintering and characterization of flyash-based mullite with MgO addition. J. Eur. Ceram. Soc. 2011, 31, 687–695. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Zhou, J.; Lin, B.; Ji, Z.; Zhang, X.; Meng, G. Recycling of fly ash for preparing porous mullite membrane supports with titania addition. J. Hazard. Mater. 2010, 180, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Feng, X.; Feng, X.; Ding, Y.; Liu, X.; Meng, G. Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash. J. Alloys Compd. 2008, 460, 599–606. [Google Scholar] [CrossRef]
- Mondal, A.; Maitra, S.; Chandra, S.; Mitra, N.K. Alumina-Mullite Composites through Interaction of Bauxite and Fly Ash. Trans. Indian Ceram. Soc. 2008, 67, 81–85. [Google Scholar] [CrossRef]
- Kusnierova, M.; Prascakova, M.; Matysek, D.; Cablík, V. Mullitization of black coal fly ashes. Acta Montan. Slovaca 2011, 16, 192–196. [Google Scholar]
- Guo, A.; Liu, J.; Xu, R.; Xu, H.; Wang, C. Preparation of mullite from desilication-flyash. Fuel 2010, 89, 3630–3636. [Google Scholar] [CrossRef]
- Lin, B.; Li, S.; Hou, X.; Li, H. Preparation of high performance mullite ceramics from high aluminum fly ash by an effective method. J. Alloys Compd. 2015, 623, 359–361. [Google Scholar] [CrossRef]
- Catarino, L.; Sousa, J.; Martins, I.M.; Vieira, M.T.; Oliveira, M.M. Ceramic products obtained from rock wastes. J. Mater. Process. Technol. 2003, 144, 843–845. [Google Scholar] [CrossRef]
- Souza, L.P.D.F.; Mansur, H.S. Production and characterization of ceramic pieces obtained by slip casting using powder wastes. J. Mater. Process. Technol. 2004, 145, 14–20. [Google Scholar] [CrossRef]
- Oliveira, F.A.C.; Livramento, V.; Delmas, F. Novel mullite-based ceramics manufactured from inorganic wastes I. Densification behaviour. J. Mater. Process. Technol. 2007, 6, 101–108. [Google Scholar]
- Martins, I.M.; Sousa, J.B.; Catarino, L.; Vieira, M.T.; Oliveira, M. The Formation of Mullite from Rock Wastes Containing Alumina and Silica. In Key Engineering Materials; Trans Tech Publications: Zurich, Switzerland, 2002; Volume 230, pp. 380–383. [Google Scholar]
- Martins, I.M.; Vieira, S.; Livramento, V.; Sousa, J.; Delmas, F.; Oliveira, M.M.; Viera, M.T. Manufacture of Ceramic Products Using Inertized Aluminum Sludges. In Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2004; Volume 456, pp. 822–826. [Google Scholar]
- Vieira, M.T.; Catarino, L.; Oliveira, M.; Sousa, J.; Torralba, J.M.; Cambronero, L.E.G.; Gonzalez-Mesones, F.L.; Victoria, A. Optimization of the sintering process of raw material wastes. J. Mater. Process. Technol. 1999, 93, 97–101. [Google Scholar] [CrossRef]
- Brasileiro, M.I.; Rodrigues, A.W.B.; Menezes, R.R.; Neves, G.A.; Santana, L.N.L. The Kaolin Residue and Its Use for Production of Mullite Bodies. In Sustainable Development—Energy, Engineering and Technologies—Manufacturing and Environment; Ghenai, C., Ed.; InTech: Rijeka, Croatia, 2012; pp. 117–142. [Google Scholar]
- Choo, T.F.; Murshidi, J.A.; Saidin, N.U.; Paulus, W.; Abdullah, Y. Production of Mullite Ceramic Bodies from Kaolin Processing Waste and Aluminum Hydroxide. In Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2017; Volume 888, pp. 81–85. [Google Scholar]
- Sembiring, S.; Simanjuntak, W.; Manurung, P.; Asmi, D.; Low, I.M. Synthesis and characterisation of gel-derived mullite precursors from rice husk silica. Ceram. Int. 2014, 40, 7067–7072. [Google Scholar] [CrossRef] [Green Version]
- Serra, M.F.; Conconi, M.S.; Gauna, M.R.; Suárez, G.; Aglietti, E.F.; Rendtorff, N.M. Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. J. Asian Ceram. Soc. 2016, 4, 61–67. [Google Scholar] [CrossRef]
- Aripin, H.; Mitsudo, S.; Prima, E.S.; Sudiana, I.N.; Kikuchi, H.; Sano, S.; Sabchevski, S. Crystalline mullite formation from mixtures of alumina and a novel material—Silica xerogel converted from sago waste ash. Ceram. Int. 2015, 41, 6488–6497. [Google Scholar] [CrossRef]
- Khattab, R.M.; EL-Rafei, A.M.; Zawrah, M.F. In situ formation of sintered cordierite–mullite nano–micro composites by utilizing of waste silica fume. Mater. Res. Bull. 2012, 47, 2662–2667. [Google Scholar] [CrossRef]
- Mizuno, M. Microstructure, Microchemistry, and Flexural Strength of Mullite Ceramics. J. Am. Ceram. Soc. 1991, 74, 3017–3022. [Google Scholar] [CrossRef]
- Sadik, C.; Amrani, I.E.; Albizane, A. Recent advances in silica-alumina refractory: A review. J. Asian Ceram. Soc. 2014, 2, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Harbison, W. Handbook of Refractory Practice; Harbison-walker refractories Co.: Mount Union, PA, USA, 2005. [Google Scholar]
- Xin, Q. Diesel Engine System Design; Woodhead Publishing in Mechanical Engineering: Cambridge, UK, 2011. [Google Scholar]
- Wang, W.; Shi, Z.; Wang, Z.; Wang, S. Phase transformation and properties of high-quality mullite ceramics synthesized using desert drift sands as raw materials. Mater. Lett. 2018, 221, 271–274. [Google Scholar] [CrossRef]
- Mahnicka-Goremikina, L.; Svinka, R.; Svinka, V. Influence of ZrO2 and WO3 doping additives on the thermal properties of porous mullite ceramics. Ceram. Int. 2018, 44, 16873–16879. [Google Scholar] [CrossRef]
- Peretz, I.; Bradt, R.C. Linear thermal expansion coefficients of mullite-matrix aluminosilicate refractory bodies. J. Am. Ceram. Soc. 1983, 66, 823–829. [Google Scholar] [CrossRef]
- Feng, F.; Jang, B.; Park, J.Y.; Lee, K.S. Effect of Yb2SiO5 addition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material. Ceram. Int. 2016, 42, 15203–15208. [Google Scholar] [CrossRef]
Ref. | Ceramics Product | Industrial Wastes Type | Sintering Temperature (°C) | Processing Method | Year |
---|---|---|---|---|---|
[5] | mullite | aluminum sludge + ceramic raw materials | 1450–1650 | mixing, pressing | 2008 |
[6] | mullite | aluminum sludge + ceramic raw materials | 1250–1650 | mixing, pressing | 2005 |
[7] | Glass-ceramics | aluminum sludge + waste glasses | 1650 | mixing | 2013 |
[8] | mullite/zirconia | aluminum dross + zircon | 1400–1500 | mixing, pressing | 2009 |
[9] | mullite | coal fly ash + Al2O3 | Plasma heating | mixing | 2009 |
[10] | mullite | coal fly ash + Al2O3 | 1200–1600 | mixing, pressing | 2001 |
[11] | porous mullite | coal fly ash + Al2O3 | 1300–1500 | freeze casting | 2010 |
[12] | porous mullite | coal fly ash + Al2O3/Al(OH)3 | 1400–1600 | mixing, molding | 2012 |
[13] | porous mullite | coal fly ash + Al(OH)3 | 1000–1500 | mixing, pressing | 2008 |
[14] | mullite whiskers | coal fly ash + Al2(SO4)3∙18H2O | 800–1200 | mixing, leaching | 2011 |
[15] | mullite whiskers | coal fly ash + Ammonium aluminum sulfate hydrate | 1300 | mixing, leaching | 2007 |
[16] | mullite | coal fly ash + aluminum dross | 1500 | mixing, pressing | 2019 |
[17] | mullite | coal fly ash + bauxite | 1100–1500 | mixing, pressing | 2009 |
[18] | porous mullite | coal fly ash + bauxite | 1200–1550 | mixing, pressing | 2009 |
[19] | porous mullite | coal fly ash + bauxite | 1100–1500 | mixing, pressing | 2015 |
[20] | porous mullite/corundum | coal fly ash + bauxite | 1100–1400 | mixing, pressing | 2015 |
[21] | porous mullite | coal fly ash + bauxite | 1200–1500 | mixing, pressing | 2014 |
[22] | mullite | coal fly ash + bauxite | Plasma heating | mixing | 2011 |
[23] | mullite | coal fly ash + bauxite | 1300–1550 | mixing, pressing | 2011 |
[24] | porous mullite | coal fly ash + bauxite | 1300–1500 | mixing, pressing | 2010 |
[25] | mullite | coal fly ash + bauxite | 1000–1600 | mixing, pressing | 2008 |
[26] | mullite/alumina | coal fly ash + bauxite | 1000–1200 | mixing, pressing | 2008 |
[27] | Glass ceramics | coal fly ash | 1050–1500 | mixing | 2011 |
[28] | mullite | coal fly ash | 1300–1600 | mixing, molding | 2010 |
[29] | mullite | coal fly ash | 1200–1600 | leaching, molding | 2015 |
[30] | Glass ceramics | slate waste | 1150–1170 | pressing | 2003 |
[31] | mullite | slate waste | 1100 | slip casting | 2004 |
[32] | mullite | slate waste + Al2O3 | 1250–1475 | mixing, pressing | 2008 |
[33] | mullite | slate waste + Al2O3 | 1150–1250 | mixing, pressing | 2002 |
[34] | mullite | slate waste + aluminum sludge | 1170–1300 | mixing, pressing | 2004 |
[35] | mullite | schist waste | 1000–1200 | pressing | 1999 |
[36] | mullite | kaolin waste + Al2O3 | 1400–1600 | mixing, pressing | 2012 |
[37] | mullite | kaolin waste + Al(OH)3 | 1300–1600 | mixing, pressing | 2017 |
[38] | mullite | rice husk silica + Al(NO3)3∙9H2O | 1150–1350 | sol-gel | 2014 |
[39] | mullite | rice husk silica + Al2O3 | 1100–1600 | mixing, pressing | 2016 |
[40] | mullite | sago waste + Al2O3 | 1400–1700 | Sol-gel, mixing, pressing | 2015 |
[41] | mullite/cordierite | waste silica + ball clay + Al2O3 | 1350–1450 | mixing, pressing | 2012 |
Ref. | Ceramics Product | Industrial Wastes Type | Additives | Effects |
---|---|---|---|---|
[7] | Glass ceramics | Aluminum sludge + waste glasses | CaF2, H3BO3 | reduced sintering temperature |
[10] | mullite | coal fly ash + Al2O3 | 3Y-PSZ | increased densification |
[11] | porous mullite | Coal fly ash + Al2O3 | Y2O3-doped ZrO2 (3YZ) | increased densification |
[12] | porous mullite | Coal fly ash + Al2O3/Al(OH)3 | AlF3 | assisted anisotropic mullite growth |
[14] | mullite whiskers | Coal fly ash + aluminum sulfate anhydrous | Na2SO4 | reduced sintering temperature, assisted anisotropic mullite growth |
[15] | mullite whiskers | Coal fly ash + Ammonium aluminum sulfate hydrate | NaH2PO4·2H2O | assisted anisotropic mullite growth |
[17] | mullite | Coal fly ash + bauxite | V2O5 | increased densification |
[19] | porous mullite | Coal fly ash + bauxite | AlF3, MoO3 | reduced sintering temperature |
[20] | porous mullite | Coal fly ash + bauxite | AlF3, MoO3 | reduced sintering temperature |
[21] | porous mullite | Coal fly ash + bauxite | AlF3, V2O5 | assisted anisotropic mullite growth |
[23] | mullite | Coal fly ash + bauxite | MgO | assisted anisotropic mullite growth |
[24] | porous mullite | Coal fly ash + bauxite | TiO2 | reduced sintering temperature |
Ref. | Ceramics Product | Sintering Temp. (°C) | Compressive Strength (MPa) | Flexural Strength(MPa)/Type | Fracture Strength (MPa) | Porosity (%) |
---|---|---|---|---|---|---|
[10] | mullite | 1500 | - | 169/4-point | 395 | - |
[17] | mullite | 1500 | - | 108/3-point | - | 1.42 |
[25] | Mullite | 1400 | - | 71/3-point | - | 40 |
1500 | - | 104/3-point | - | 26 | ||
1600 | - | 186/3-point | - | 6 | ||
[28] | Mullite | 1300 | - | 34/3-point | - | 39.6 |
1400 | - | 45/3-point | - | 32.7 | ||
1500 | - | 70/3-point | - | 16.7 | ||
[29] | Mullite | 1400 | 80 | - | - | 27 |
1500 | 104 | - | - | 13 | ||
1600 | 169 | - | - | 1 | ||
[33] | mullite | 1250 | - | 43/3-point | - | - |
[11] | mullite | 1500 | 23.2 | - | - | 66.9 |
[12] | mullite | 1600 | - | 75/3-point | - | 45 |
[18] | Mullite | 1450 | - | 45/3-point | - | 44 |
1500 | - | 52/3-point | 43 | |||
1550 | - | 66/3-point | - | 40 | ||
[23] | mullite | 1500 | - | 35/3-point | - | 42 |
[24] | mullite | 1450 | - | 28/3-point | - | 46 |
[5] | mullite-containing glass ceramics | 1650 | - | 59/3-point | - | - |
[30] | mullite-containing glass ceramics | 1170 | - | 92/3-point | - | - |
[35] | mullite-containing glass ceramics | 1100 | - | 45/3-point | - | - |
1170 | - | 95/3-point | - | - | ||
1200 | - | 80/3-point | - | - | ||
[19] | mullite/corundum composite | 1200 | - | 80/Biaxial | - | 48 |
1300 | - | 105/Biaxial | - | 46 | ||
1400 | - | 145/Biaxial | - | 42 | ||
1500 | - | 158/Biaxial | - | 30 | ||
[20] | mullite/corundum composite | 1200 | - | 61/3-point | - | - |
1300 | - | 68/3-point | - | - | ||
[21] | mullite/corundum composite | 1200 | - | 48/Biaxial | - | 33 |
1300 | - | 65/Biaxial | - | 38 | ||
1400 | - | 70/Biaxial | - | 40 | ||
1500 | - | 115/Biaxial | - | 23 | ||
[34] | mullite/corundum composite | 1250 | - | 67/3-point | - | - |
1270 | - | 113/3-point | - | - | ||
1300 | - | 126/3-point | - | - | ||
[41] | mullite/cordierite composite | 1400 | 180 | - | - | 30 |
Ref. | Raw Materials | Type of Raw Materials | Ceramics Product | CTE (× 10−6 °C−1)/Temperature Range |
---|---|---|---|---|
[5] | aluminum sludge + ceramic raw materials | Industrial wastes | mullite | 5.6/20–800 °C |
[16] | coal fly ash + Al dross | Industrial wastes | mullite | 5.8/30–1000 °C |
[18] | coal fly ash + bauxite | Industrial wastes | porous mullite | 6.1/26–1000 °C |
[23] | coal fly ash + bauxite | Industrial wastes | mullite | 5.9/26–1550 °C |
[46] | drift sand + alumina | minerals | mullite | 5.5/30–900 °C |
[47] | alumina + silica + kaolin | minerals | porous mullite | 5.6/200–900 °C |
[48] | ball clay + alumina + kaolin | minerals | Mullite/alumina | 5.0–5.7/400–1200 °C |
[49] | commercial mullite (Duramul 325F) | Laboratory grade chemicals | Porous mullite | 5.5/30–1200 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choo, T.F.; Mohd Salleh, M.A.; Kok, K.Y.; Matori, K.A. A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 39. https://doi.org/10.3390/recycling4030039
Choo TF, Mohd Salleh MA, Kok KY, Matori KA. A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling. 2019; 4(3):39. https://doi.org/10.3390/recycling4030039
Chicago/Turabian StyleChoo, Thye Foo, Mohamad Amran Mohd Salleh, Kuan Ying Kok, and Khamirul Amin Matori. 2019. "A Review on Synthesis of Mullite Ceramics from Industrial Wastes" Recycling 4, no. 3: 39. https://doi.org/10.3390/recycling4030039
APA StyleChoo, T. F., Mohd Salleh, M. A., Kok, K. Y., & Matori, K. A. (2019). A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling, 4(3), 39. https://doi.org/10.3390/recycling4030039