Analysis of Thermomechanical Properties of Selected Class of Recycled Thermoplastic Materials Based on Their Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Sample Preparation
2.2.2. Thermal Characterization
2.2.3. Mechanical Testing
3. Results and Discussion
3.1. Thermal Properties
3.2. Thermo-Mechanical Properties
3.2.1. Tensile Strength
Tensile Strengths and Strain Behaviors of Recycled Polypropylene and Virgin Polypropylene
Tensile Strengths of Recycled Polystyrene and Virgin Polystyrenes (HIPS 7240 and GPPS 1540)
3.2.2. Young’s Modulus
3.2.3. Toughness
3.2.4. Hardness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geels, K.; Kopp, W.; Rückert, M. Mounting. Metallographic and Materialographic Specimen Preparation, Light Microscopy. In Image Analysis and Hardness Testing; Nester, R.C., Petzow, G., Eds.; ASTM International: West Conshohocken, PA, USA, 2007; pp. 54–79. [Google Scholar]
- Awad, S.A.; Khalaf, E.M. Investigation of improvement of properties of polypropylene modified by nano silica composites. Compos. Commun. 2019, 12, 59–63. [Google Scholar] [CrossRef]
- Bertomeu, D.; Arrieta, M.P.; Ferri, M.; Juan, L. Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials 2018, 11, 1886. [Google Scholar] [CrossRef]
- Kalargaris, I.; Tian, G.; Gu, S. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy 2017, 131, 179–185. [Google Scholar] [CrossRef]
- Zander, A.N.E.; Gillan, M.; Gardea, F. Recycled polypropylene blends as novel 3D printing materials. Addit. Manuf. 2019, 25, 122–130. [Google Scholar] [CrossRef]
- Mourad, A.I. Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater. Des. 2010, 31, 918–929. [Google Scholar] [CrossRef]
- Stenvall, E.; Boldizar, A. Mechanical and Thermal Characterization of Post-Consumer WEEE Thermoplastics. Recycling 2016, 1, 89. [Google Scholar] [CrossRef]
- Minelgaite, A.; Liobikiene, G. Waste problem in European Union and its infl uence on waste management behaviours. Sci. Total Environ. 2019, 667, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, A.; Ozbakkaloglu, T. Recycled plastic. In New Trends in Eco-efficient and Recycled Concrete; Woodhead Publishing: Sawston, UK, 2019; pp. 59–79. [Google Scholar]
- Valencia, C.; Franco, J.M. Effect of amorphous/recycled polypropylene ratio on thermo-mechanical properties of blends for lubricant applications. Polym. Test. 2013, 32, 516–524. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Haziq, N.; Aslan, C. Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources 2019, 8, 97. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Grigore, M.E. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Galve, E.; Elduque, D.; Pina, C. Dimensional Stability and Process Capability of an Industrial Component Injected with Recycled Polypropylene. Polymers 2019, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, W.; Bao, R. Toughening of Polypropylene with β-Nucleated Thermoplastic Vulcanizates Based. Mater. Des. 2013, 51, 536–543. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Y.; Song, B.; Fan, X. Nucleating agent induced impact fracture behavior change in PP/POE blend. Polym. Bull. 2009, 62, 405–419. [Google Scholar] [CrossRef]
- Krache, R.; Benavente, R.; Lo, J.M.; Peren, M. Competition between R and γ Polymorphs in a β-Nucleated Metallocenic Isotactic Polypropylene. Macromolecules 2007, 40, 6871–6878. [Google Scholar] [CrossRef]
- Kulkarni, G.S. Introduction to Polymer and Their Recycling Techniques. In Recycling of Polyurethane Foams; William Andrew Publishing: Halle(Saale), Germany, 2018; pp. 1–16. [Google Scholar] [CrossRef]
- Taylor, P.; Maharana, T.; Negi, Y.S.; Mohanty, B. Recycling of Polystyrene. Polym.-Plast. Technol. Eng. 2007, 46, 729–736. [Google Scholar] [CrossRef]
- Satterthwaite, M.K. Plastics Based on Styrene. In Brydson’s Plastics Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 311–328. [Google Scholar]
- Wang, F.; Chang, L.; Wu, G. Synthesis and Properties of In-Situ Bulk High Impact polystyrene Toughened by high cis-1,4 Polybutadiene. Polymers 2019, 11, 791. [Google Scholar] [CrossRef]
- Ding, L.; Jia, G.; Sun, H. Estimation of Mechanical Performance, Thermal Stability and Flame Retardancy of High-Impact Polystyrene/Surface-Modified APP/Carboxylic-Functionalized MWCNTs Nanocomposites. Polymers 2019, 11, 615. [Google Scholar] [CrossRef]
- Muñoz-pascual, S.; Lopez-gonzalez, E.; Saiz-arroyo, C. Effect of Mold Temperature on the Impact Behavior and Morphology of Injection Molded Foams Based on Polypropylene Polyethylene—Octene. Polymers 2019, 11, 894. [Google Scholar] [CrossRef]
- Dimitrakakis, E.; Janz, A.; Bilitewski, B.; Gidarakos, E. Small SWEE: Determining recyclables and hazardous substances in plastics. J. Hazard. Mater. 2009, 161, 913–919. [Google Scholar] [CrossRef]
- Martinho, G.; Pires, A.; Saraiva, L.; Ribeiro, R. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag. 2012, 32, 1213–1217. [Google Scholar] [CrossRef]
- Zdiri, K.; Elamri, A.; Hamdaoui, M. Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 2018, 11, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Bahlouli, N.; Adddiego, F. Elastic and yield behaviours of recycled polypropylene-based composites: Experimental and modelling study. Compos. Part B Eng. 2016, 99, 132–152. [Google Scholar]
- Ahmed, M.R. Effect of Recycling in Post-Consumer Polystyrene Cups; Arcada University of Applied Sciences: Helinski, Finland, 2016; pp. 7–60. Available online: https://www.theseus.fi/bitstream/handle/10024/113847/theseus%20mehnaz.pdf?sequence=1&isAllowed=y (accessed on 27 January 2019).
- Jmal, H.; Bahlouli, N.; Wagner-Kocher, C.; Ruch, F. Influence of the grade on the variability of the mechanical properties of polypropylene waste. Waste Manag. 2018, 1–13. [Google Scholar] [CrossRef]
- Pospõâsï, J.; Horak, Z.; Krulis, Z. Degradation and aging of polymer blends I. Thermomechanical and thermal degradation. Polym. Degrad. Stab. 2009, 65, 405–414. [Google Scholar]
- Brems, A.; Baeyens, J.; Dewil, R. Recycling And Recovery of Post-Consumer Plastic. Therm. Sci. 2012, 16, 669–685. [Google Scholar] [CrossRef]
- Kwon, D.E.; Park, B.K. Solid-State Foaming of Acrylonitrile-Butadiene-Styrene/Recycled Polyethylene Terephthalate Using Carbon Dioxide as a Blowing Agent. Polymers 2019, 11, 291. [Google Scholar] [CrossRef]
- Lago, E.D.; Boaretti, C.; Piovesan, F. The Effect of Different Compatibilizers on the Properties of a Post-Industrial PC/PET Blend. Materials 2019, 12, 49. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Alcock, B.; Cabrera, N.O.; Reynolds, C.T. The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos. Sci. Technol. 2007, 67, 2061–2070. [Google Scholar] [CrossRef]
- Schmidt, P.N.S.; Cioffi, M.O.H.; Voorwald, H.J.C. Flexural Test On Recycled Polystyrene. Procedia Eng. 2011, 10, 930–935. [Google Scholar] [CrossRef] [Green Version]
- EAG LABORATORIES. Characterization of Polymers Using Differential Scanning Calorimetry (DSC). Available online: https://www.eag.com/resources/whitepapers/characterization-of-polymers-using-differential-scanning-calorimetry-dsc/ (accessed on 3 February 2019).
- Brun, N.; Bourson, P.; Margueron, S. Study of the thermal behavior of syndiotactic and atactic polystyrene by Raman spectroscopy. AIP Conf. Proc. 2011, 1353, 856–860. [Google Scholar] [CrossRef]
- Santana, R.C.; Manrich, S. Studies on Thermo-Mechanical Properties of Post-Consumer High Impact Polystyrene in Five reprocessing steps. SAGE J. Prog. Rubber Plast. Recycl. Technol. 2002, 18, 99–110. [Google Scholar] [CrossRef]
- Biswal, M.; Mohanty, S.; Nayak, S.K. Recycling of engineering plastics from waste electrical and electronic equipment: Influence of virgin polycarbonate and impact modifier on the final perfprmance of blends. Waste Manag. Res. 2014, 371–387. [Google Scholar] [CrossRef]
- Vilaplana, F.; Ribes-Greus, A.; Karlsson, S. Analytical strategies for the quality assessment of recycled high-impact polystyrene: A combination of thermal analysis, vibrational spectroscopy, and chromatography. Anal. Chim. Acta 2007, 604, 18–28. [Google Scholar] [CrossRef]
- Matei, E.; Rapa, M.; Pica, A. Recycled Polypropylene Improved with Thermoplastic Elastomers. Hindawi Int. J. Polym. Sci. 2017, 2017. [Google Scholar] [CrossRef]
- Mat-Shayuti, M.S.; Abdullah, M.Z.; Megat-Yusoff, P.S.M. Thermal properties and morphology of Polypropylene/Polycarbonate/Polypropylene-Graft-Maleic anhydride blends. MATEC Web Conf. 2016, 69, 03001. [Google Scholar] [CrossRef]
- Rajan, G.S.; Vu, Y.T.; Mark, J.E.; Myers, C.L. Thermal and mechanical properties of polypropylene in the thermoplastic elastomeric state. Eur. Polym. J. 2004, 40, 63–71. [Google Scholar] [CrossRef]
- Gregorova, A.; Safia, A. Application of Differential Scanning Calorimetry to the Characterization of Biopolymers. In Application of Calorimetry in a Wide Context: Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalometry, 2nd ed.; Amal, A., Ed.; IntechOpen: Rijeka, Croatia, 2013; Volume 3, pp. 85–164. [Google Scholar]
- Mallick, P.K.; Zhou, Y. Effects of Temperature and Strain Rate on the Tensile Behavior of Unfilled and Talc-Filled Polypropylene. Polym. Eng. Sci. 2002, 42, 2449–2459. [Google Scholar] [CrossRef]
- Duigou, A.; Bourmaud, A.; Baley, C. What is the technical and environmental interest in reusing a recycled polypropylene-hemp fibre composite? Polym. Degrad. Stab. 2011, 96, 1732–1739. [Google Scholar] [CrossRef]
- Brachet, P.; Hinrichsen, E.L.; Melum, F. Modification of mechanical properties of recycled polypropylene from post-consumer containers. Waste Manag. 2008, 28, 2456–2464. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Manalo, A.C. Effect of elevated temperature on the tensile properties of recycled mixed plastic waste. In Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials, Byron Bay, Australia, 9–12 December 2014; Volume 1, pp. 281–286. [Google Scholar]
- Bayer, S.; Delale, F.; Liaw, M. Effect of Temperature On Mechanical Properties of Nanoclay Reinforced Polymeric Nanocomposites. J. Compos. Mater. 2012, 27, 491–504. [Google Scholar]
- Younesi, M.; Bahrololoom, M.E. Producing toughened PP/HA-LLDPE ternary bio-composite using a two-step blending method. Mater. Des. 2009, 30, 4253–4259. [Google Scholar] [CrossRef]
- Sahin, S.; Yayla, P. Effects of testing parameters on the mechanical properties of polypropylene random copolymer. Polym. Test. 2005, 24, 613–619. [Google Scholar] [CrossRef]
- Benzarti, K.; Collin, X. Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Woodhead Publishing Limited-Elsevier: Sawston, UK, 2013; pp. 361–439. [Google Scholar]
- Hirayama, D.; Saron, C. Morphologic and mechanical properties of blends from recycled acrylonitrile-butadiene-styrene and high-impact polystyrene. Polymer 2018, 135, 271–278. [Google Scholar] [CrossRef]
- Othman, M.H.; Tun, U.; Onn, H. Recycled Polypropylene-Nanoclay Composites—Mechanical Properties. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2019; 4195p. [Google Scholar]
- Tamer, S.; Sahin, T.; Senol, S. The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS). Mater. Des. 2007, 28, 2303–2309. [Google Scholar] [CrossRef]
- Jiménez, A.; Torre, L.; Kenny, J.M. Processing and properties of recycled polypropylene modified with elastomers. Plast. Rubber Compos. 2003, 32, 357–367. [Google Scholar] [CrossRef]
- Homkhiew, C.; Ratanawilai, T.; Thongruang, W. Time-temperature and stress-dependent behaviors of composites made from recycled polypropylene and rubberwood flour. Constr. Build. Mater. 2014, 66, 98–104. [Google Scholar] [CrossRef]
- Ratanawilai, T.; Homkhiew, C.; Thongruang, W. Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Ind. Crops Prod. 2014, 56, 52–59. [Google Scholar] [CrossRef]
Material | ||
---|---|---|
GPPS 1540 | 93 | |
HIPS 7240 | 95 | |
Recycled PS | ||
Recycled PP | 149 | |
Virgin PP | 171 |
Temperature (°C) | |||||
---|---|---|---|---|---|
Parameters | Material | 24 ± 1 | 40 ± 1 | 60 ± 1 | 80 ± 1 |
Maximum tensile strenth (MPa) | GPPS 1540 | 24.7 ± 1.0 | 26.2 ± 1.7 | 21.4 ± 1.0 | 19.2 ± 0.3 |
HIPS 7240 | 14.0 ± 0.1 | 11.4 ± 0.1 | 9.2 ± 0.1 | 7.3 | |
Recycled PS | 14.2 ± 0.1 | 11.2 ± 0.1 | 8.8 ± 0.1 | 7.0 | |
Recycled PP | 22.2 ± 0.2 | 18.7 ± 0.2 | 14.9 ± 0.1 | 11.5 ± 0.1 | |
Virgin PP | 35.0 | 30.0 | 24.0 | 17.0 | |
Young’s modulus (MPa) | GPPS 1540 | 2312.2 ± 21.5 | 2260.0 ± 28.0 | 1965.5 ± 34.4 | 1456.3 ± 24.0 |
HIPS 7240 | 1215.0 ± 15.2 | 1156.5 ± 24.8 | 1021.8 ± 13.0 | 837.3 ± 14.5 | |
Recycled PS | 1169.0 ± 3.1 | 1079.8 ± 11.5 | 951.8 ± 18.2 | 803.3 ± 3.9 | |
Recycled PP | 1041.3 ± 17.4 | 721.0 ± 11.3 | 441.0 ± 8.9 | 389.5 ± 24.4 | |
Virgin PP | 1800.0 | 1300.0 | 900.0 | 600.0 | |
Toughness (J/) | GPPS 1540 | 8.0 ± 1.5 | 4.2 ± 0.8 | 5.7 ± 1.1 | 6.3 ± 0.5 |
HIPS 7240 | 36.9 ± 2.9 | 36.2 ± 2.3 | 40.2 ± 1.4 | 48.1 ± 3.2 | |
Recycled PS | 42.8 ± 3.5 | 45.8 ± 3.1 | 42.6 ± 4.5 | 59.2 ± 1.2 | |
Recycled PP | 55.1 ± 1.7 | 60.3 ± 1.9 | No break | No break | |
Virgin PP | 18.0 | 56.0 | 58.0 | 65.0 | |
Hardness (Shore D) | GPPS 1540 | 87.5 ± 0.3 | 86.0 ± 0.4 | 84.3 ± 0.3 | 81.3 ± 0.3 |
HIPS 7240 | 76.0 ± 0.4 | 73.5 ± 0.3 | 72.0 ± 0.4 | 70.5 ± 0.3 | |
Recycled PS | 78.3 ± 0.5 | 75.8 ± 0.5 | 74.8 ± 0.5 | 71.3 ± 0.5 | |
Recycled PP | 69.5 ± 0.9 | 66.5 ± 0.3 | 64.8 ± 0.5 | 61.8 ± 0.3 | |
Virgin PP | 63.0 | 58.0 | 52.0 | 49.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momanyi, J.; Herzog, M.; Muchiri, P. Analysis of Thermomechanical Properties of Selected Class of Recycled Thermoplastic Materials Based on Their Applications. Recycling 2019, 4, 33. https://doi.org/10.3390/recycling4030033
Momanyi J, Herzog M, Muchiri P. Analysis of Thermomechanical Properties of Selected Class of Recycled Thermoplastic Materials Based on Their Applications. Recycling. 2019; 4(3):33. https://doi.org/10.3390/recycling4030033
Chicago/Turabian StyleMomanyi, Job, Michael Herzog, and Peter Muchiri. 2019. "Analysis of Thermomechanical Properties of Selected Class of Recycled Thermoplastic Materials Based on Their Applications" Recycling 4, no. 3: 33. https://doi.org/10.3390/recycling4030033
APA StyleMomanyi, J., Herzog, M., & Muchiri, P. (2019). Analysis of Thermomechanical Properties of Selected Class of Recycled Thermoplastic Materials Based on Their Applications. Recycling, 4(3), 33. https://doi.org/10.3390/recycling4030033