Water Electrolysis Anode Based on 430 Stainless Steel Coated with Cobalt Recycled from Li-Ion Batteries
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Cobalt Electrodeposition Bath
2.2. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of Electrodeposited Cobalt onto 430SS
3.2. Mechanism of Oxygen Evolution
3.3. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kjartansdóttir, C.K.; Nielsen, L.P.; Møller, P. Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int. J. Hydrogen Energy 2013, 38, 8221–8231. [Google Scholar] [CrossRef]
- Belz, S. A synergetic use of hydrogen and fuel cells in human spaceflight power systems. Acta Astronaut. 2016, 121, 323–331. [Google Scholar] [CrossRef]
- Guo, D.; Shangguan, E.; Li, J.; Zhao, T.; Chang, Z.; Li, Q.; Yuan, X.Z.; Wang, H. Effects of γ-CoOOH coating on the high-temperature and high-rate performances of spherical nickel hydroxide electrodes. Int. J. Hydrogen Energy 2014, 39, 3895–3903. [Google Scholar] [CrossRef]
- Marinia, S.; Salvi, P.; Nellia, P.; Pesenti, R.; Villa, M.; Berrettoni, M.; Zangari, G.; Kiros, Y. Advanced alkaline water electrolysis. Electrochim. Acta 2012, 82, 384–391. [Google Scholar] [CrossRef]
- Moureaux, F.; Stevens, P.; Toussaint, G.; Chatenet, M. Development of an oxygen-evolution electrode from 316L stainless steel: Application to the oxygen evolution reaction in aqueous lithium-air batteries. J. Power Sources 2013, 229, 123–132. [Google Scholar] [CrossRef]
- Li, P.C.; Chien, Y.J.; Hu, C.C. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries. J. Power Sources 2016, 313, 37–45. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Li, G.; Peng, F.; Yu, H. Co3S4/NCNTs: A catalyst for oxygen evolution reaction. Catal. Today 2015, 245, 74–78. [Google Scholar] [CrossRef]
- Giordanoa, L.; Han, B.; Risch, M.; Hong, W.T.; Rao, R.R.; Stoerzinger, K.A.; Horn, Y.S. pH dependence of OER activity of oxides: Current and future perspectives. Catal. Today 2016, 262, 2–10. [Google Scholar] [CrossRef]
- Yu, F.; Li, F.; Sun, L. Stainless steel as an efficient electrocatalyst for water oxidation in alkaline solution. Int. J. Hydrogen Energy 2016, 41, 5230–5233. [Google Scholar] [CrossRef]
- Alonso, F.J.P.; Adán, C.; Rojas, S.; Peña, M.A.; Fierro, J.L.G. Ni-Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2015, 40, 51–61. [Google Scholar] [CrossRef]
- ARGUS Metal Prices. Available online: https://www.argusmedia.com/metals/argus-metal-prices (accessed on 12 May 2018).
- Liang, Y.; Liu, Q.; Asiri, A.M.; Sun, X.; He, Y. Nickel-Iron foam as a three-dimensional robust oxygen evolution electrode with high activity. Int. J. Hydrogen Energy 2015, 40, 13258–13263. [Google Scholar] [CrossRef]
- Ramírez, J.M.O.; Cornelio, M.L.C.; Godínez, J.U.; Arco, E.B.; Castellanos, R.H. Studies on the hydrogen evolution reaction on different stainless steels. Int. J. Hydrogen Energy 2007, 32, 3170–3173. [Google Scholar] [CrossRef]
- Gonçalves, S.A.; Garcia, E.M.; Taroco, H.A.; Teixeira, R.G.; Guedes, K.J.; Gorgulho, H.F.; Martelli, P.B.; Fernandes, A.P.L. Development of non-enzymatic glucose sensor using recycled cobalt from cell phone Li-ion batteries. Waste Manag. 2015, 46, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.M.; Taroco, H.A.; Matencio, T.; Domingues, R.Z.; Santos, J.A.F.; Freitas, M.B.J.G. Electrochemical recycling of cobalt from spent cathodes of lithium–ion batteries: Its application as coating on SOFC interconnects. J. Appl. Electrochem. 2011, 41, 1373–1379. [Google Scholar] [CrossRef]
- Freitas, M.B.J.G.; Garcia, E.M. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J. Power Sources 2007, 171, 953–959. [Google Scholar] [CrossRef]
- Garcia, E.M.; Taroco, H.A.; Madeira, A.P.C.; Souza, A.G.; Silva, R.R.; Melo, J.O.; Taroco, C.G.; Teixeira, Q.C. Application of Spent Li-Ion Batteries Cathode in Methylene Blue Dye Discoloration. J. Chem. 2017, 2017, 3621084. [Google Scholar] [CrossRef]
- Garcia, E.M.; Vanessa de Freitas, C.L.; Tarôco, H.A.; Matencio, T.; Domingues, R.Z.; dos Santos, J.A. The anode environmentally friendly for water electrolysis based in LiCoO2 recycled from spent lithium-ion batteries. Int. J. Hydrogen Energy 2012, 37, 16795–16799. [Google Scholar] [CrossRef]
- Garcia, E.; Taroco, H.; Teixeira, R. Fast Electrochemical Method for Organic Dye Decolorization Using Recycled Li-Ion Batteries. Recycling 2018, 3, 35. [Google Scholar] [CrossRef]
- Garcia, E.M.; Taroco, H.A.; Domingues, R.Z.; Matencio, T.; Gonçalves, S.L. Electrochemical recycling of cell phone Li-ion batteries: Application as corrosion protector of AISI 430 stainless steel in artificial seawater. Ionics 2016, 22, 735–740. [Google Scholar] [CrossRef]
- Vialat, P.; Rabu, P.; Mousty, C.; Leroux, F. Insight of an easy topochemical oxidative reaction in obtaining high performance electrochemical capacitor based on CoII CoIII monometallic cobalt layered double hydroxide. J. Power Sources 2015, 293, 1–10. [Google Scholar] [CrossRef]
- Ko, J.M.; Soundarajan, D.; Park, J.H.; Yang, S.D.; Kim, S.W.; Kim, K.M.; Yu, K.H. γ-Ray-induced synthesis and electrochemical properties of a mesoporous layer-structured α-Co(OH)2 for supercapacitor applications. Curr. Appl. Phys. 2012, 12, 341–345. [Google Scholar] [CrossRef]
- Panga, M.; Long, G.; Jiang, S.; Ji, Y.; Han, W.; Wang, B.; Liu, X.; Xi, Y.; Wang, D.; Xu, F. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors. Chem. Eng. J. 2015, 280, 377–384. [Google Scholar] [CrossRef]
- Garcia, E.M.; Tarôco, H.A.; Matencio, T.; Domingues, R.Z.; dos Santos, J.A. Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction. Int. J. Hydrogen Energy 2012, 37, 6400–6406. [Google Scholar] [CrossRef]
- Lyons, M.E.; Brandon, M.P. The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution part II—Cobalt. Int. J. Electrochem. Sci. 2008, 3, 1425–1462. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, E.M.; Taroco, H.A. Water Electrolysis Anode Based on 430 Stainless Steel Coated with Cobalt Recycled from Li-Ion Batteries. Recycling 2018, 3, 42. https://doi.org/10.3390/recycling3030042
Garcia EM, Taroco HA. Water Electrolysis Anode Based on 430 Stainless Steel Coated with Cobalt Recycled from Li-Ion Batteries. Recycling. 2018; 3(3):42. https://doi.org/10.3390/recycling3030042
Chicago/Turabian StyleGarcia, Eric M., and Hosane A. Taroco. 2018. "Water Electrolysis Anode Based on 430 Stainless Steel Coated with Cobalt Recycled from Li-Ion Batteries" Recycling 3, no. 3: 42. https://doi.org/10.3390/recycling3030042
APA StyleGarcia, E. M., & Taroco, H. A. (2018). Water Electrolysis Anode Based on 430 Stainless Steel Coated with Cobalt Recycled from Li-Ion Batteries. Recycling, 3(3), 42. https://doi.org/10.3390/recycling3030042