Recycling within the Chemical Industry: The Circular Economy Era
Abstract
:Acknowledgement
Conflicts of Interest
References
- Clark, J. From waste to wealth using green chemistry: The way to long term stability. Curr. Opin. Green Chem. 2017, 8, 10–13. [Google Scholar] [CrossRef]
- Sherwood, J.; Clark, J.H.; Farmer, T.J.; Herrero-Davilla, L.; Moity, L. Recirculation: A new concept to drive innovation in sustainable product design for bio-based products. Molecules 2017, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Warner, J.C. Green Chem. Theory Pract. 1998; Oxford University Press: New York, NY, USA, 1198. [Google Scholar]
- Anastas, P.T.; Zimmerman, J.B. Peer reviewed: Design through the 12 principles of green engineering. Environ. Sci. Technol. 2003, 37, 94–101. [Google Scholar] [CrossRef]
- Anastas, P.T.; Ferris, C.A. Benign by Design: Alternative Synthetic Design for Pollution Prevention; American Chemical Society: Washington, DC, USA, 1994; Volume 577. [Google Scholar]
- Ricciardi, M.; Cespi, D.; Celentano, M.; Genga, A.; Malitesta, C.; Proto, A.; Capacchione, C.; Cucciniello, R. Bio-propylene glycol as value-added product from Epicerol process. Sustain. Chem. Pharm. 2017, 6, 10–13. [Google Scholar] [CrossRef]
- Cucciniello, R.; Ricciardi, M.; Vitiello, R.; Di Serio, M.; Proto, A.; Capacchione, C. Synthesis of monoalkyl glyceryl ethers by ring opening of glycidol with alcohols in the presence of Lewis acids. ChemSusChem 2016, 9, 3262–3265. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, M.; Passarini, F.; Capacchione, C.; Proto, A.; Barrault, J.; Cucciniello, R.; Cespi, D. First attempt of glycidol to monoalkyl glyceryl ethers conversion by acid heterogeneous catalysis: Synthesis and simplified sustainability assessment. ChemSusChem 2018. [Google Scholar] [CrossRef] [PubMed]
- Artz, J.; Muller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Antonetti, E.; Iaquaniello, G.; Salladini, A.; Spadaccini, L.; Peranother, S.; Centi, G. Waste to chemicals for a circular economy: The case of urea production (waste-to-urea). ChemSusChem 2017, 10, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Peranother, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Shaikh, R.R.; Pornpraprom, S.; D’Elia, V. Catalytic strategies for the cycloaddition of pure, diluted and waste CO2 to epoxide under ambient conditions. Chem. Rev. 2018, 8, 419–450. [Google Scholar] [CrossRef]
- Ricciardi, M.; Passarini, F.; Vassura, I.; Proto, A.; Capacchione, C.; Cucciniello, R.; Cespi, D. Glycidol, a valuable substrate for the synthesis of monoalkyl glyceryl ethers: A simplified life cycle approach. ChemSusChem 2017, 10, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Cespi, D.; Cucciniello, R.; Ricciardi, M.; Capacchione, C.; Vassura, I.; Passarini, F.; Proto, A. A simplified early stage assessment of process intensification: Glycidol as value added product from epichlorohydrin industry wastes. Green Chem. 2016, 18, 4559–4570. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Rundquist, E.M.; Pink, C.J.; Livingston, A.J. Organic solvents nanofiltration: A potential alternative to distillation for solvent recovery from crystallization mother liquors. Green Chem. 2012, 14, 2197–2205. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial symbiosis: Literature and taxonomy. Annu. Rev. Environ. Resour. 2000, 25, 313–337. [Google Scholar]
- Clark, J.H.; Farmer, T.J.; Herrero-Davilla, L.; Sherwood, J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem. 2016, 18, 3914–3934. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucciniello, R.; Cespi, D. Recycling within the Chemical Industry: The Circular Economy Era. Recycling 2018, 3, 22. https://doi.org/10.3390/recycling3020022
Cucciniello R, Cespi D. Recycling within the Chemical Industry: The Circular Economy Era. Recycling. 2018; 3(2):22. https://doi.org/10.3390/recycling3020022
Chicago/Turabian StyleCucciniello, Raffaele, and Daniele Cespi. 2018. "Recycling within the Chemical Industry: The Circular Economy Era" Recycling 3, no. 2: 22. https://doi.org/10.3390/recycling3020022
APA StyleCucciniello, R., & Cespi, D. (2018). Recycling within the Chemical Industry: The Circular Economy Era. Recycling, 3(2), 22. https://doi.org/10.3390/recycling3020022