Valorization of Industrial Wastewater Treatment Sludge in Eco-Friendly Mortars: Enhancing Thermal Insulation and Sustainability
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Used in Mortar Production
2.1.1. Detergent Sludge
2.1.2. Cement (CPJ 45)
2.1.3. Sand
2.1.4. Mechanism of Sludge Generation
- Fly ash (30%);
- Bottom ash (30%);
- Coastal sand (40%).
2.2. Mix Design for Mortar Preparation
2.3. X-Ray Diffraction and Inductively Coupled Plasma Optical Emission Spectroscopy
2.4. Infrared Spectroscopy
2.5. Evaluation of Mechanical Properties
2.5.1. Preparation of Studied Samples
2.5.2. Methodology for Flexural and Compressive Strengths
2.6. Studied Thermo-Physical Properties
2.6.1. Preparation of Samples
2.6.2. Experimental Method
- (W/m·K): Thermal conductivity;
- α (mm2/s): Thermal diffusivity = λ/(ρ·cp);
- (kg/m3): Density;
- (J/kg·K): Specific heat capacity;
- (MJ/m3·K): Volumetric heat capacity;
- E (J/m2·K·s½): Thermal effusivity.
3. Results and Discussion
3.1. Particle Size and Chemical Composition of Sludge
3.1.1. Particle Size Analysis of Sludge
3.1.2. Chemical Composition of Sludge
3.2. Evaluation of the Mechanical Properties of Sludge-Based Mortars
3.2.1. Flexural Strength
- M0 (0% sludge): 4.65 ± 0.08 MPa;
- M20 (20% sludge): 3.93 ± 0.06 MPa (15.5% decrease);
- M30 (30% sludge): 2.50 ± 0.09 MPa (46.2% decrease).
3.2.2. Compressive Strength
- M0: 13.91 ± 0.13 MPa at 28 days;
- M20: 12.63 ± 0.11 MPa (9.2% reduction);
- M30: 8.73 ± 0.14 MPa (37.2% reduction).
3.3. X-Ray Diffraction (XRD) Analysis Results of Mortars
3.4. Evaluation of the Thermophysical Properties of Sludge-Based Mortars
3.4.1. Analysis of Thermophysical Properties
3.4.2. Results of Thermophysical Properties
Thermophysical Characterization
Effect of Sludge Content on Thermal Conductivity
Variation in Thermal Conductivity with Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parde, D.; Behera, M. Challenges of wastewater and wastewater management. In Sustainable Industrial Wastewater Treatment and Pollution Control; Springer Nature: Singapore, 2023; pp. 229–255. [Google Scholar] [CrossRef]
- El Hafidi, E.M.; Mortadi, A.; Graich, A.; Chahid, E.G.; Laasri, S.; Moznine, R.E.; Monkade, M. Monitoring treatment of industrial wastewater using conventional methods and impedance spectroscopy. Environ. Monit. Assess. 2023, 195, 832. [Google Scholar] [CrossRef] [PubMed]
- Fulke, A.B.; Ratanpal, S.; Sonker, S. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Mar. Pollut. Bull. 2024, 206, 116707. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Long, G.; Zhou, J.L.; Ma, C. Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resour. Conserv. Recycl. 2020, 154, 104606. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Lin, K.L.; Lin, C.Y. Hydration characteristics of waste sludge ash utilized as raw cement material. Cem. Concr. Res. 2005, 35, 1999–2007. [Google Scholar] [CrossRef]
- Lin, K.L.; Chiang, K.Y.; Lin, C.Y. Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cem. Concr. Res. 2005, 35, 1074–1081. [Google Scholar] [CrossRef]
- Chakraborty, S.; Jo, B.W.; Jo, J.H.; Baloch, Z. Effectiveness of sewage sludge ash combined with waste pozzolanic minerals in developing sustainable construction material: An alternative approach for waste management. J. Clean. Prod. 2017, 153, 253–263. [Google Scholar] [CrossRef]
- Mejdi, M.; Saillio, M.; Chaussadent, T.; Divet, L.; Tagnit-Hamou, A. Hydration mechanisms of sewage sludge ashes used as cement replacement. Cem. Concr. Res. 2020, 135, 106115. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, W.; Yang, Y.; Liu, X.; Su, Q.; Zhang, Y.; Wang, J.; Luo, X.; Zhou, M.; Luo, W.; et al. Mechanistic study of the effect of potassium ferrate and straw fiber on the enhancement of strength in cement-based solidified municipal sludge. Sci. Rep. 2023, 13, 7660. [Google Scholar] [CrossRef] [PubMed]
- Agra, T.M.; Lima, V.M.; Basto, P.E.; Neto, A.A.M. Characterizing and processing a kaolinite-rich water treatment sludge for use as high-reactivity pozzolan in cement manufacturing. Appl. Clay Sci. 2023, 236, 106870. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Build. Environ. 2019, 151, 240–250. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Hu, S.; Guo, S. Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy 2019, 134, 110949. [Google Scholar] [CrossRef]
- Tiskatine, R.; Bougdour, N.; Oaddi, R.; Gourdo, L.; Rahib, Y.; Bouzit, S.; Bazgaou, A.; Bouirden, L.; Ihlal, A.; Aharoune, A. Thermo-physical analysis of low-cost ecological composites for building construction. J. Build. Eng. 2018, 20, 762–775. [Google Scholar] [CrossRef]
- Chandel, S.S.; Sharma, V.; Marwah, B.M. Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renew. Sustain. Energy Rev. 2016, 65, 459–477. [Google Scholar] [CrossRef]
- Alfano, F.R.D.A.; Olesen, B.W.; Palella, B.I.; Riccio, G. Thermal comfort: Design and assessment for energy saving. Energy Build. 2014, 81, 326–336. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Giuzio, G.F.; Palombo, A.; Russo, G. A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems. Renew. Sustain. Energy Rev. 2023, 173, 113015. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Sivasuriyan, A.; Patchamuthu, P.; Jayaseelan, R. Thermal performance of energy-efficient buildings for sustainable development. Environ. Sci. Pollut. Res. 2022, 29, 51130–51142. [Google Scholar] [CrossRef] [PubMed]
- Nassiri, S.; Butt, A.A.; Zarei, A.; Roy, S.; Filani, I.; Pandit, G.A.; Mateos, A.; Haider, M.M.; Harvey, J.T. Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment. Buildings 2025, 15, 3099. [Google Scholar] [CrossRef]
- Golewski, G.L. The Investigation of Shear Fracture Toughness and Structure of ITZ of Limestone Concrete with Different Aggregate Grain Size. Materials 2025, 18, 3954. [Google Scholar] [CrossRef]
- Mghaiouini, R.; Abderrazzak, G.; Benzbiria, N.; Elaoud, A.; Garmim, T.; Belghiti, M.E.; Hozayn, M.; Monkade, M.; El Bouari, A. Elaboration and physico-mechanical characterization of a new eco-mortar composite based on magnetized water and fly ash. J. Ecol. Eng. 2020, 21, 245–254. [Google Scholar] [CrossRef]
- El Hafidi, E.M.; Mortadi, A.; Lizoul, B.; Hairch, Y.; Mghaiouini, R.; Sabor, A.; Mnaouer, K.; Chahid, E.G.; Jebbari, S.; El Moznine, R.; et al. Assessment of sand and hearth ash filtration for wastewater treatment and novel monitoring via complex conductivity. Euro-Mediterr. J. Environ. Integr. 2025, 10, 1137–1148. [Google Scholar] [CrossRef]
- Bouaich, F.Z.; Maherzi, W.; Benzerzour, M.; Taleb, M.; Abriak, N.E.; Rais, Z.; Senouci, A. Mortar mixing using treated wastewater feasibility. Constr. Build. Mater. 2022, 352, 128983. [Google Scholar] [CrossRef]
- Lizoul, B.; Mortadi, A.; El Hafidi, E.M.; Kounbach, S.; Elmelouky, A. Exploring the interactions of apatitic tricalcium phosphate with copper ions: Time-resolved structural transformations and electrical property insights. Solid State Ion. 2024, 410, 116552. [Google Scholar] [CrossRef]
- Laasri, S.; El Hafidi, E.M.; Mortadi, A.; Chahid, E.G. Solar-powered single-stage distillation and complex conductivity analysis for sustainable domestic wastewater treatment. Environ. Sci. Pollut. Res. 2024, 31, 29321–29333. [Google Scholar] [CrossRef] [PubMed]
- Tiskatine, R.; Bougdour, N.; Idoum, A.; Bazgaou, A.; Oaddi, R.; Ihlal, A.; Aharoune, A. Experimental investigation on rock thermal properties under the influence of temperature. Thermochim. Acta 2023, 720, 179424. [Google Scholar] [CrossRef]
- Sutcu, M.; Gencel, O.; Erdogmus, E.; Kizinievic, O.; Kizinievic, V.; Karimipour, A.; Velasco, P.M. Low cost and eco-friendly building materials derived from wastes: Combined effects of bottom ash and water treatment sludge. Constr. Build. Mater. 2022, 324, 126669. [Google Scholar] [CrossRef]
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry—A review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- García, R.; de la Villa, R.V.; Vegas, I.; Frías, M.; de Rojas, M.S. The pozzolanic properties of paper sludge waste. Constr. Build. Mater. 2008, 22, 1484–1490. [Google Scholar] [CrossRef]
- Mashaly, A.O.; Shalaby, B.N.; Rashwan, M.A. Performance of mortar and concrete incorporating granite sludge as cement replacement. Constr. Build. Mater. 2018, 169, 800–818. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Ning, Y.; Zhang, W. Experimental study on the effect of wastewater and waste slurry of mixing plant on mechanical properties and microstructure of concrete. J. Build. Eng. 2022, 52, 104307. [Google Scholar] [CrossRef]
- Karaman, S.; Gunal, H.; Ersahin, S. Assesment of clay bricks compressive strength using quantitative values of colour components. Constr. Build. Mater. 2006, 20, 348–354. [Google Scholar] [CrossRef]
- Ingunza, M.D.P.D.; Camarini, G.; da Costa, F.M.S. Performance of mortars with the addition of septic tank sludge ash. Constr. Build. Mater. 2018, 160, 308–315. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X.; He, L.; Zhang, Y. Effect of sewage sludge ash on mechanical properties, drying shrinkage and high-temperature resistance of cement mortar. Case Stud. Constr. Mater. 2024, 20, e03101. [Google Scholar] [CrossRef]
- Li, H.; Kong, J.; Zhang, H.; Gao, J.; Fang, Y.; Shi, J.; Ge, T.; Fang, T.; Shi, Y.; Zhang, R.; et al. Mechanisms and adsorption capacities of ball milled biomass fly ash/biochar composites for the adsorption of methylene blue dye from aqueous solution. J. Water Process Eng. 2023, 53, 103713. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, B.; Shi, J.Y.; Rong, H.; Tao, H.Y.; Jamal, A.S.; Han, X.D. Recycling drinking water treatment sludge in construction and building materials: A review. Sci. Total Environ. 2024, 926, 171513. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, K.J.; Wilson, W.; James, S.; Musso, S.; Ulm, F.J. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials. Cem. Concr. Res. 2015, 67, 271–285. [Google Scholar] [CrossRef]
- Yang, J.; Ren, Y.; Chen, S.; Zhang, Z.; Pang, H.; Wang, X.; Lu, J. Thermally activated drinking water treatment sludge as a supplementary cementitious material: Properties, pozzolanic activity and hydration characteristics. Constr. Build. Mater. 2023, 365, 130027. [Google Scholar] [CrossRef]
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J.L. Energy efficiency and thermal comfort in historic buildings: A review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- Verbeke, S.; Audenaert, A. Thermal inertia in buildings: A review of impacts across climate and building use. Renew. Sustain. Energy Rev. 2018, 82, 2300–2318. [Google Scholar] [CrossRef]
- Pan, D.; Yan, S.; Liu, X.; Sun, X.; Wu, Y.; Wang, X.; Dan, J.; Yang, X.; Wang, J. Development of solid waste-based self-insulating material with high strength and low thermal conductivity. Ceram. Int. 2023, 49, 5239–5248. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, F.; Zhu, R.; Dai, G.; Wang, W.; Wang, W.; Guo, X.; Jiang, J.; Wang, Z. Mechanism analysis of pore structure and crystalline phase of thermal insulation bricks with high municipal sewage sludge content. Constr. Build. Mater. 2020, 263, 120021. [Google Scholar] [CrossRef]
- Sanou, I.; Bamogo, H.; Sory, N.; Gansoré, A.; Millogo, Y. Effect of the coconut fibers and cement on the physico-mechanical and thermal properties of adobe blocks. Heliyon 2024, 10, e38752. [Google Scholar] [CrossRef] [PubMed]
Mortar | Thermal Conductivity (W/m·K) | Thermal Diffusivity (mm2/s) | Thermal Capacity (MJ/m3·K) | Thermal Effusivity (J/K m2 s1/2) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ1 | λ2 | λ3 | λ Moyenne | Δλ/λ (%) | α1 | α2 | α3 | α Moyenne | Δα/α (%) | (ρcp)1 | (ρcp)2 | (ρcp)3 | (ρcp) Moyenne | Δ(ρcp) /(ρcp) (%) | E Moyenne | ΔE/E (%) | |
0% sludge | 1.042 | 1.057 | 1.063 | 1.054 | 0.85 | 0.6085 | 0.6099 | 0.6104 | 0.6096 | 0.13 | 1.712 | 1.733 | 1.741 | 1.729 | 0.98 | 1349.9 | 0.915 |
5% sludge | 0.9041 | 0.9056 | 0.908 | 0.9059 | 0.23 | 0.5535 | 0.5467 | 0.5354 | 0.5452 | 1.52 | 1.633 | 1.656 | 1.696 | 1.661 | 1.75 | 1226.6 | 0.99 |
10% sludge | 0.8432 | 0.8566 | 0.8646 | 0.8548 | 1.15 | 0.516 | 0.498 | 0.51 | 0.508 | 1.57 | 1.634 | 1.721 | 1.695 | 1.683 | 2.72 | 1199.4 | 1.935 |
15% sludge | 0.8245 | 0.8189 | 0.8142 | 0.8192 | 0.65 | 0.5203 | 0.5011 | 0.5107 | 0.5107 | 1.88 | 1.585 | 1.634 | 1.594 | 1.604 | 2.53 | 1146.3 | 1.59 |
20% sludge | 0.7962 | 0.7945 | 0.8018 | 0.7975 | 0.54 | 0.516 | 0.51 | 0.486 | 0.504 | 2.38 | 1.543 | 1.558 | 1.65 | 1.582 | 2.92 | 1123.2 | 1.73 |
25% sludge | 0.7337 | 0.7388 | 0.7394 | 0.7373 | 0.28 | 0.4858 | 0.4807 | 0.4894 | 0.4853 | 0.84 | 1.51 | 1.537 | 1.511 | 1.519 | 1.12 | 1058.3 | 0.7 |
30% sludge | 0.6704 | 0.6711 | 0.6682 | 0.6699 | 0.18 | 0.4649 | 0.4758 | 0.4711 | 0.4706 | 1.1 | 1.442 | 1.41 | 1.418 | 1.424 | 1.28 | 976.7 | 0.73 |
Mortar | Thermal Conductivity at 30 °C (W/m·K) | Thermal Conductivity at 40 °C (W/m·K) | Thermal Conductivity at 50 °C (W/m·K) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ1 | λ2 | λ3 | λ Moyenne | Δλ/λ (%) | λ1 | λ2 | λ3 | λ Moyenne | Δλ/λ (%) | λ1 | λ2 | λ3 | λ Moyenne | Δλ/λ (%) | |
0% sludge | 1.042 | 1.057 | 1.063 | 1.054 | 0.85 | 1.071 | 1.068 | 1.059 | 1.066 | 0.47 | 1.091 | 1.089 | 1.069 | 1.083 | 0.74 |
5% sludge | 0.9041 | 0.9056 | 0.908 | 0.9059 | 0.23 | 0.9201 | 0.9102 | 0.9309 | 0.9204 | 1.14 | 0.9223 | 0.9292 | 0.9259 | 0.9258 | 0.37 |
10% sludge | 0.8432 | 0.8566 | 0.8646 | 0.8548 | 1.15 | 0.871 | 0.8709 | 0.8732 | 0.8717 | 0.17 | 0.9129 | 0.9101 | 0.9106 | 0.9112 | 0.19 |
15% sludge | 0.8245 | 0.8189 | 0.8142 | 0.8192 | 0.65 | 0.8377 | 0.8416 | 0.8404 | 0.8399 | 0.2 | 0.8422 | 0.8451 | 0.8402 | 0.8425 | 0.31 |
20% sludge | 0.7962 | 0.7945 | 0.8018 | 0.7975 | 0.54 | 0.8102 | 0.8073 | 0.8008 | 0.8061 | 0.51 | 0.8155 | 0.8151 | 0.8192 | 0.8166 | 0.32 |
25% sludge | 0.7337 | 0.7388 | 0.7394 | 0.7373 | 0.28 | 0.7446 | 0.7403 | 0.748 | 0.7443 | 0.5 | 0.7664 | 0.7629 | 0.7603 | 0.7632 | 0.42 |
30% sludge | 0.6704 | 0.6711 | 0.6682 | 0.6699 | 0.18 | 0.6677 | 0.6681 | 0.6649 | 0.6669 | 0.18 | 0.6781 | 0.6747 | 0.6707 | 0.6745 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hafidi, E.M.; Mortadi, A.; Lizoul, B.; Chahid, E.G.; Laasri, S. Valorization of Industrial Wastewater Treatment Sludge in Eco-Friendly Mortars: Enhancing Thermal Insulation and Sustainability. Recycling 2025, 10, 192. https://doi.org/10.3390/recycling10050192
El Hafidi EM, Mortadi A, Lizoul B, Chahid EG, Laasri S. Valorization of Industrial Wastewater Treatment Sludge in Eco-Friendly Mortars: Enhancing Thermal Insulation and Sustainability. Recycling. 2025; 10(5):192. https://doi.org/10.3390/recycling10050192
Chicago/Turabian StyleEl Hafidi, El Mokhtar, Abdelhadi Mortadi, Brahim Lizoul, El Ghaouti Chahid, and Said Laasri. 2025. "Valorization of Industrial Wastewater Treatment Sludge in Eco-Friendly Mortars: Enhancing Thermal Insulation and Sustainability" Recycling 10, no. 5: 192. https://doi.org/10.3390/recycling10050192
APA StyleEl Hafidi, E. M., Mortadi, A., Lizoul, B., Chahid, E. G., & Laasri, S. (2025). Valorization of Industrial Wastewater Treatment Sludge in Eco-Friendly Mortars: Enhancing Thermal Insulation and Sustainability. Recycling, 10(5), 192. https://doi.org/10.3390/recycling10050192