Bioleaching of Gold from Printed Circuit Boards: Potential Sustainability of Thiosulphate
Abstract
:1. Introduction
2. Preprocessing of PCBs for Bioleaching
3. Bioleaching
3.1. Bacteria Used for Bioleaching and Mechanism
3.2. Bioleaching Methods
3.3. Effective Factors During the Bioleaching Process
3.4. Progress in Culture Growth
4. Precious Metal Leaching
4.1. Cyanide-Based Leaching
4.2. Thiosulphate-Based Leaching
4.2.1. Thiosulphate Leaching Methods
Ammonia-Based Method
Non-Ammonia Method
4.2.2. Challenges with the Thiosulphate-Based Leaching
4.2.3. Biothiosulphate Produced by Microorganisms
5. Engineering Perspective and Scaling up
6. Process Economics
6.1. Cost Estimation
6.2. Cost Minimisation Strategies
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vardanyan, A.; Vardanyan, N.; Abrahamyan, N.; Aatach, M.; Gaydardzhiev, S. Sequential biologically assisted extraction of Cu and Zn from printed circuit boards (PCB). Int. J. Environ. 2022, 81, 1756–1771. [Google Scholar] [CrossRef]
- Baniasadi, M.; Vakilchap, F.; Bahaloo-Horeh, N.; Mousavi, S.M.; Farnaud, S. Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. J. Ind. Eng. Chem. 2019, 76, 75–90. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Uddin, M.N.; Chowdhury, J.I.; Ahmed, S.F.; Uddin, M.N.; Mofijur, M.; Uddin, M.A. A review of the recent development, challenges, and opportunities of electronic waste (e-waste). Int. J. Environ. Sci. Technol. 2023, 20, 4513–4520. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.; Fei, W.; Liu, Z.; He, W.; Li, G. The reuse of electronic components from waste printed circuit boards: A critical review. Environ. Sci. Adv. 2023, 2, 196–214. [Google Scholar] [CrossRef]
- Arshadi, M.; Yaghmaei, S. Advances in bioleaching of copper and nickel from electronic waste using Acidithiobacillus ferrooxidans: Evaluating daily pH adjustment. Chem. Pap. 2020, 74, 2211–2227. [Google Scholar] [CrossRef]
- Hubau, A.; Minier, M.; Chagnes, A.; Joulian, C.; Silvente, C.; Guezennec, A.G. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Sep. Purif. Technol. 2020, 238, 116481. [Google Scholar] [CrossRef]
- Arshadi, M.; Mousavi, S.M. Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Separ. Purif. Technol. 2015, 147, 210–219. [Google Scholar] [CrossRef]
- Baniasadi, M.; Graves, J.E.; Ray, D.A.; De Silva, A.L.; Renshaw, D.; Farnaud, S. Closed-loop recycling of copper from waste printed circuit boards using bioleaching and electrowinning processes. Waste Biomass Valorization 2021, 12, 3125–3136. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Wu, Y.; Guo, F. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour. Conserv. Recycl. 2020, 157, 104787. [Google Scholar] [CrossRef]
- Deng, S.; Xiao, Z.; Zhang, W.; Noble, A.; Das, S.; Yih, Y.; Sutherland, J.W. Economic analysis of precious metal recovery from electronic waste through gas-assisted microflow extraction. Resour. Conserv. Recycl. 2023, 190, 106810. [Google Scholar] [CrossRef]
- Garg, H.; Nagar, N.; Ellamparuthy, G.; Angadi, S.I.; Gahan, C.S. Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Heliyon 2019, 5, e02883. [Google Scholar] [CrossRef]
- Ahamed, A.; Ge, L.; Zhao, K.; Veksha, A.; Bobacka, J.; Lisak, G. Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards “green” sensor manufacturing. Chemosphere 2021, 278, 130462. [Google Scholar] [CrossRef]
- Gui, Q.; Khan, M.I.; Wang, S.; Zhang, L. The ultrasound leaching kinetics of gold in the thiosulphate leaching process catalysed by cobalt ammonia. Hydrometallurgy 2020, 196, 105426. [Google Scholar] [CrossRef]
- Syed, S. Recovery of gold from secondary sources—A review. Hydrometallurgy 2012, 115, 30–51. [Google Scholar] [CrossRef]
- Wang, J.; Faraji, F.; Ramsay, J.; Ghahreman, A. A review of biocyanidation as a sustainable route for gold recovery from primary and secondary low-grade resources. J. Clean. Prod. 2021, 296, 126457. [Google Scholar] [CrossRef]
- Ilkhani, Z.; Vakilchap, F.; Sadeghi, N.; Mousavi, S.M. Base metals (Fe, Al, Ti) and rare earth elements (Ce, La, Pr) leaching from red mud through an efficient chemical-biological hybrid approach. Miner. Eng. 2024, 208, 108603. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W.; Liu, Y.; Jia, H.; Zhou, J.; Wei, P.; Zhou, H. Bioleaching of dewatered electroplating sludge for the extraction of base metals using an adapted microbial consortium: Process optimization and kinetics. Hydrometallurgy 2020, 191, 105227. [Google Scholar] [CrossRef]
- Dong, Y.; Zan, J.; Lin, H. Bioleaching of heavy metals from metal tailings utilizing bacteria and fungi: Mechanisms, strengthen measures, and development prospect. J. Environ. Manag. 2023, 344, 118511. [Google Scholar] [CrossRef]
- Diaz, M.A.; De Ranson, I.U.; Dorta, B.; Banat, I.M.; Blazquez, M.L.; Gonzalez, F.; Ballester, A. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contam. Int. J. 2015, 24, 16–29. [Google Scholar] [CrossRef]
- Williamson, A.J.; Folens, K.; Matthijs, S.; Cortes, Y.P.; Varia, J.; Du Laing, G.; Hennebel, T. Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. Miner. Eng. 2021, 163, 106774. [Google Scholar] [CrossRef]
- Sadeghi, N.; Vakilchap, F.; Ilkhani, Z.; Mousavi, S.M. Assessment of the visible light effect on one-step bacterial leaching of metals from spent lithium-ion batteries cathode pretreated by a bio-chemical lixiviant. J. Clean. Prod. 2024, 436, 140432. [Google Scholar] [CrossRef]
- Mahmoud, A.; Cézac, P.; Hoadley, A.F.; Contamine, F.; d’Hugues, P. A review of sulphide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeter. Biodegr. 2017, 119, 118–146. [Google Scholar] [CrossRef]
- Roy, J.J.; Cao, B.; Madhavi, S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 2021, 282, 130944. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Priyanka, B.; Kumar, P.S.; Karishma, S.; Jeevanantham, S.; Indraganti, S. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 2022, 287, 132230. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Xie, H.; Liu, L. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid. Chemosphere 2013, 93, 1288–1294. [Google Scholar] [CrossRef]
- Li, J.; Duan, H.; Yu, K.; Liu, L.; Wang, S. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resour. Conserv. Recycl. 2010, 54, 810–815. [Google Scholar] [CrossRef]
- Ghosh, B.; Ghosh, M.K.; Parhi, P.; Mukherjee, P.S.; Mishra, B.K. Waste printed circuit boards recycling: An extensive assessment of current status. J. Clean. Prod. 2015, 94, 5–19. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Pathak, A.; Kothari, R.; Dastidar, M.G.; Sreekrishnan, T.R.; Kim, D.J. Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulphur and iron-oxidizing microorganisms: Continuous stirred tank reactor studies. J. Environ. Sci. Health A 2014, 49, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Pourhossein, F.; Mousavi, S.M.; Yaghmaei, S. Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted A. ferrooxidans in a bubble column bioreactor. Sep. Purif. Technol. 2021, 272, 118701. [Google Scholar] [CrossRef]
- Naderi, A.; Vakilchap, F.; Motamedian, E.; Mousavi, S.M. Regulatory-systemic approach in Aspergillus niger for bioleaching improvement by controlling precipitation. Appl. Microbiol. Biotechnol. 2023, 107, 7331–7346. [Google Scholar] [CrossRef] [PubMed]
- Horeh, N.B.; Mousavi, S.M.; Shojaosadati, S.A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J. Power Sources 2016, 320, 257–266. [Google Scholar] [CrossRef]
- Vardanyan, A.; Vardanyan, N.; Aâtach, M.; Malavasi, P.; Gaydardzhiev, S. Bio-Assisted Leaching of Non-Ferrous Metals from Waste Printed Circuit Boards—Importance of Process Parameters. Metals 2022, 12, 2092. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Deng, X.; Bohu, T.; Zea, L.; Khaleque, H.N.; Gumulya, Y.; Cheng, K.Y. Prospective directions for biohydrometallurgy. Hydrometallurgy 2020, 195, 105376. [Google Scholar] [CrossRef]
- Dong, Y.; Zan, J.; Lin, H. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective. J. Environ. Manag. 2023, 348, 119354. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Shi, Q.; Wei, Z.; Shah, K.; Efstathiadis, H.; Meng, X.; Liang, Y. Leaching of valuable metals from cathode active materials in spent lithium-ion batteries by levulinic acid and biological approaches. Heliyon 2023, 9, e15788. [Google Scholar] [CrossRef]
- Marappa, N.; Ramachandran, L.; Dharumadurai, D.; Nooruddin, T. Recovery of gold and other precious metal resources from environmental polluted E-waste printed circuit board by bioleaching Frankia. Int. J. Environ. Res. 2020, 14, 165–176. [Google Scholar] [CrossRef]
- Natarajan, G.; Ting, Y.P. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification. Chemosphere 2015, 136, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Kara, I.T.; Wagland, S.T.; Coulon, F. Techno-economic assessment of bioleaching for metallurgical by-products. J. Environ. Manag. 2024, 358, 120904. [Google Scholar] [CrossRef]
- Adetunji, A.I.; Oberholster, P.J.; Erasmus, M. Bioleaching of metals from e-waste using microorganisms: A re-view. Minerals 2023, 13, 828. [Google Scholar] [CrossRef]
- Pradhan, J.K.; Kumar, S. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag. Res. 2012, 30, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Van Yken, J.; Boxall, N.J.; Cheng, K.Y.; Nikoloski, A.N.; Moheimani, N.; Kaksonen, A.H. Techno-economic analysis of an integrated bio-and hydrometallurgical process for base and precious metal recovery from waste printed circuit boards. Hydrometallurgy 2023, 222, 106193. [Google Scholar] [CrossRef]
- Kim, B.J.; Koh, Y.K.; Kwon, J.S. Bioleaching of pyrrhotite with bacterial adaptation and biological oxidation for iron recovery. Metals 2021, 11, 295. [Google Scholar] [CrossRef]
- Gu, T.; Rastegar, S.O.; Mousavi, S.M.; Li, M.; Zhou, M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol. 2018, 261, 428–440. [Google Scholar] [CrossRef]
- Li, X.; Feng, C.; Lei, M.; Luo, K.; Wang, L.; Liu, R.; Hu, Y. Bioremediation of organic/heavy metal contaminants by mixed cultures of microorganisms: A review. Open Chem. 2022, 20, 793–807. [Google Scholar] [CrossRef]
- Qiu, M.Q.; Xiong, S.Y.; Zhang, W.M.; Wang, G.X. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 2005, 18, 987–990. [Google Scholar] [CrossRef]
- Yachkula, A.; Rozova, O.; Abashina, T.; Vainshtein, M.; Grouzdev, D.; Bulaev, A. Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk. Minerals 2022, 12, 1051. [Google Scholar] [CrossRef]
- Tay, S.B.; Natarajan, G.; Rahim, M.N.B.A.; Tan, H.T.; Chung, M.C.M.; Ting, Y.P.; Yew, W.S. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Sci. Rep. 2013, 3, 2236. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Z. Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resour. Conserv. Recycl. 2016, 113, 28–39. [Google Scholar] [CrossRef]
- Panda, R.; Dinkar, O.S.; Jha, M.K.; Pathak, D.D. Recycling of gold from waste electronic components of devices. Korean. J. Chem. Eng. 2020, 37, 111–119. [Google Scholar] [CrossRef]
- Pourhossein, F.; Mousavi, S.M. A novel rapid and selective microbially thiosulphate bioleaching of precious metals from discarded telecommunication printed circuited boards (TPCBs). Resour. Conserv. Recycl. 2022, 187, 106599. [Google Scholar] [CrossRef]
- Jorjani, E.; Sabzkoohi, H.A. Gold leaching from ores using biogenic lixiviants—A review. Curr. Res. Biotechnol. 2022, 4, 10–20. [Google Scholar] [CrossRef]
- Hilson, G.; Monhemius, A.J. Alternatives to cyanide in the gold mining industry: What prospects for the future? J. Clean. Prod. 2006, 14, 1158–1167. [Google Scholar] [CrossRef]
- Işıldar, A.; van de Vossenberg, J.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). J. Waste Manag. 2016, 57, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, C.; Ma, C. Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J. Mater. Cycles Waste Manag. 2015, 17, 529–539. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, H.S.; Kumar, S. Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr. Microbiol. 2018, 75, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Zhu, X.; Qian, Y.; Hu, J. A new strain for recovering precious metals from waste printed circuit boards. Waste Manag. 2014, 34, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Chi, T.D.; Lee, J.C.; Pandey, B.D.; Yoo, K.; Jeong, J. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner. Eng. 2011, 24, 1219–1222. [Google Scholar] [CrossRef]
- Natarajan, G.; Ting, Y.P. Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour. Technol. 2014, 152, 80–85. [Google Scholar] [CrossRef]
- Hu, J.; Tang, Y.; Ai, F.; Lin, M.; Ruan, J. Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology. J. Hazard. Mater. 2021, 403, 123586. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Mudunuru, B.M.; Hackl, R. The role of microorganisms in gold processing and recovery—A review. Hydrometallurgy 2014, 142, 70–83. [Google Scholar] [CrossRef]
- Zhang, X.M.; Senanayake, G. A review of ammoniacal thiosulphate leaching of gold: An update useful for further research in non-cyanide gold lixiviants. Miner. Process. Extr. Metall. Rev. 2016, 37, 385–411. [Google Scholar] [CrossRef]
- Ha, V.H.; Lee, J.C.; Jeong, J.; Hai, H.T.; Jha, M.K. Thiosulphate leaching of gold from waste mobile phones. J. Hazard. Mater. 2010, 178, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Chen, J.N.; Wang, J.; Wang, W. Review of gold leaching in thiosulphate-based solutions. Trans. Nonferrous Met. Soc. China 2021, 31, 3506–3529. [Google Scholar] [CrossRef]
- Zhao, H.F.; Yang, H.Y.; Chen, X.; Chen, G.B.; Tong, L.L.; Jin, Z.N. Effect of Triethanolamine as a New and Efficient Additive on Thiosulphate-Copper-Ammonia System Leaching of Gold. Jom 2020, 72, 946–952. [Google Scholar] [CrossRef]
- Wang, J.; Xie, F.; Wang, W.; Bai, Y.; Fu, Y.; Dreisinger, D. Eco-friendly leaching of gold from a carbonaceous gold concentrate in copper-citrate-thiosulphate solutions. Hydrometallurgy 2020, 191, 105204. [Google Scholar] [CrossRef]
- Xu, B.; Kong, W.; Li, Q.; Yang, Y.; Jiang, T.; Liu, X. A review of thiosulphate leaching of gold: Focus on thiosulphate consumption and gold recovery from pregnant solution. Metals 2017, 7, 222. [Google Scholar] [CrossRef]
- Camelino, S.; Rao, J.; Padilla, R.L.; Lucci, R. Initial studies about gold leaching from printed circuit boards (PCB’s) of waste cell phones. Procedia Mater. Sci. 2015, 9, 105–112. [Google Scholar] [CrossRef]
- Lampinen, M.; Laari, A.; Turunen, I. Ammoniacal thiosulphate leaching of pressure oxidized sulphide gold concentrate with low reagent consumption. Hydrometallurgy 2015, 151, 1–9. [Google Scholar] [CrossRef]
- Oraby, E.A. Gold leaching in Thiosulphate Solutions and Its Environmental Effects Compared with Cyanide. Doctoral Dissertation, Curtin University, Perth, Australia, 2009. [Google Scholar]
- Navarro, P.; Vargas, C.; Villarroel, A.; Alguacil, F.J. On the use of ammoniacal/ammonium thiosulphate for gold extraction from a concentrate. Hydrometallurgy 2002, 65, 37–42. [Google Scholar] [CrossRef]
- Jeon, S.; Tabelin, C.B.; Park, I.; Nagata, Y.; Ito, M.; Hiroyoshi, N. Ammonium thiosulphate extraction of gold from printed circuit boards (PCBs) of end-of-life mobile phones and its recovery from pregnant leach solution by cementation. Hydrometallurgy 2020, 191, 105214. [Google Scholar] [CrossRef]
- Ficeriová, J.; Baláž, P.; Villachica, C.L. Thiosulphate leaching of silver, gold and bismuth from a complex sulphide concentrate. Hydrometallurgy 2005, 77, 35–39. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Muir, D.M. Thiosulphate leaching of gold—A review. Miner. Eng. 2001, 14, 135–174. [Google Scholar] [CrossRef]
- Petter, P.M.H.; Veit, H.M.; Bernardes, A.M. Evaluation of gold and silver leaching from printed circuit board of cellphones. J. Waste Manag. 2014, 34, 475–482. [Google Scholar] [CrossRef]
- Yu, H.; Zi, F.; Hu, X.; Zhong, J.; Nie, Y.; Xiang, P. The copper–ethanediamine–thiosulphate leaching of gold ore containing limonite with cetyltrimethyl ammonium bromide as the synergist. Hydrometallurgy 2014, 150, 178–183. [Google Scholar] [CrossRef]
- Sitando, O.; Senanayake, G.; Dai, X.; Nikoloski, A.N.; Breuer, P. A review of factors affecting gold leaching in non-ammoniacal thiosulphate solutions including degradation and in-situ generation of thiosulphate. Hydrometallurgy 2018, 178, 151–175. [Google Scholar] [CrossRef]
- Breuer, P.L.; Jeffrey, M.I. The reduction of copper(II) and the oxidation of thiosulphate and oxysulphur anions in gold leaching solutions. Hydrometallurgy 2003, 70, 163–173. [Google Scholar] [CrossRef]
- Feng, D.; van Deventer, J.S.J. Thiosulphate leaching of gold in the presence of ethylenediaminetetraacetic acid (EDTA). Miner. Eng. 2010, 23, 143–150. [Google Scholar] [CrossRef]
- Zhang, G.; Hou, L.; Chen, P.; Zhang, Q.; Chen, Y.; Zainiddinovich, N.Z.; Jia, F. Efficient and stable leaching of gold in a novel ethydiaminedhephen acetic-thiosulphate system. Miner. Eng. 2024, 209, 108639. [Google Scholar] [CrossRef]
- Chandra, I.; Jeffrey, M.I. An electrochemical study of the effect of additives and electrolyte on the dissolution of gold in thiosulphate solutions. Hydrometallurgy 2004, 73, 305–312. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Zhang, X.; Zhu, M.; Tan, W. Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulphur-oxidizing bacteria. Bioresour. Bioprocess 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Jiang, T.; Li, Q.; Zhang, X.; Wang, D. Improved thiosulphate leaching of a refractory gold concentrate calcine with additives. Hydrometallurgy. 2015, 152, 214–222. [Google Scholar] [CrossRef]
- Wang, R.; Lin, J.Q.; Liu, X.M.; Pang, X.; Zhang, C.J.; Yang, C.L.; Chen, L.X. Sulphur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Front. Microbiol. 2019, 9, 3290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Kara, I.T.; Huntington, V.E.; Simmons, N.; Wagland, S.T.; Coulon, F. Extracting Metal Ions from Basic Oxygen Steelmaking Dust by using Bio-Hydrometallurgy. Heliyon 2024, 10, e32437. [Google Scholar] [CrossRef]
- McNeice, J.; Mahandra, H.; Ghahreman, A. Application of biogenic thiosulfate produced by methylophaga sulfidovorans for sustainable gold extraction. ACS Sustain. Chem. Eng. 2022, 10, 10034–10046. [Google Scholar] [CrossRef]
- De Wit, R.; van Gemerden, H. Oxidation of sulphide to thiosulphate by Microcoleus chtonoplastes. FEMS Microbiol. Ecol. 1987, 3, 7–13. [Google Scholar] [CrossRef]
- Hutt, L.P.; Huntemann, M.; Clum, A.; Pillay, M.; Palaniappan, K.; Varghese, N.; Boden, R. Permanent draft genome of Thiobacillus thioparus DSM 505 T, an obligately chemolithoautotrophic member of the Betaproteobacteria. Stand. Genom. Sci. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Kunert, J.; Stránský, Z. Thiosulphate production from cystine by the keratinolytic prokaryote Streptomyces fradiae. Arch. Microbiol. 1988, 150, 600–601. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, H.; Cui, F.; Liu, H.; Xun, L. Recombinant Escherichia coli with sulphide: Quinone oxidoreductase and persulphide dioxygenase rapidly oxidises sulphide to sulfite and thiosulphate via a new pathway. Environ. Microbiol. 2016, 18, 5123–5136. [Google Scholar] [CrossRef]
- McNeice, J.; Mahandra, H.; Ghahreman, A. Biogenesis of thiosulfate in microorganisms and its applications for sustainable metal extraction. Rev. Environ. Sci. Biotechnol. 2022, 21, 993–1015. [Google Scholar] [CrossRef]
- Pourhossein, F.; Mousavi, S.M. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulphate by Acidithiobacillus thiooxidans. J. Hazard. Mater. 2023, 450, 131073. [Google Scholar] [CrossRef] [PubMed]
- McNeice, J.; Mahandra, H.; Ghahreman, A. Biogenic Production of Thiosulphate from Organic and Inorganic Sulphur Substrates for Application to Gold Leaching. Sustainability 2022, 14, 16666. [Google Scholar] [CrossRef]
- Xia, M.C.; Wang, Y.P.; Peng, T.J.; Shen, L.; Yu, R.L.; Liu, Y.D.; Zeng, W.M. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J. Biosci. Bioeng. 2017, 123, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, H.; Tong, L.; Sand, W. Some aspects of industrial heap bioleaching technology: From basics to practice. Min. Proc. Ext. Meta. Rev. 2022, 43, 510–528. [Google Scholar] [CrossRef]
- Jia, Y.; Ruan, R.; Qu, J.; Tan, Q.; Sun, H.; Niu, X. Multi-Scale and Trans-Disciplinary Research and Technology Developments of Heap Bioleaching. Minerals 2024, 14, 808. [Google Scholar] [CrossRef]
- Devi, A.S.; Ganesh, S. Recent bioleaching approaches employed for the extraction of metals in mining fields for the purpose of utilization and creating the sustainable future. Environ. Qual. Manag. 2024, 33, 317–333. [Google Scholar] [CrossRef]
- Tezyapar Kara, I.; Kremser, K.; Wagland, S.T.; Coulon, F. Bioleaching metal-bearing wastes and by-products for resource recovery: A review. Environ. Chem. Lett. 2023, 21, 3329–3350. [Google Scholar] [CrossRef]
- Roberto, F.F.; Schippers, A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2022, 106, 5913–5928. [Google Scholar] [CrossRef]
- Shahrabi-Farahani, M.; Yaghmaei, S.; Mousavi, S.M.; Amiri, F. Bioleaching of heavy metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor. Sep. Purif. Technol. 2014, 132, 41–49. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wu, J.Q.; Sung, S. Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment. J. Hazard. Mater. 2022, 424, 127257. [Google Scholar] [CrossRef]
- Hubau, A.; Minier, M.; Chagnes, A.; Joulian, C.; Perez, C.; Guezennec, A.G. Continuous production of a biogenic ferric iron lixiviant for the bioleaching of printed circuit boards (PCBs). Hydrometallurgy 2018, 180, 180–191. [Google Scholar] [CrossRef]
- Rawlings, D.E.; Johnson, D.B. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology 2007, 153, 315–324. [Google Scholar] [CrossRef]
- Batty, J.D.; Rorke, G.V. Development and commercial demonstration of the BioCOP™ thermophile process. Hydrometallurgy 2006, 83, 83–89. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Leão, V.A.; Gomes, O.; Lambert, F.; Bastin, D.; Gaydardzhiev, S. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. J. Waste Manag. 2015, 41, 148–158. [Google Scholar] [CrossRef]
- Mäkinen, J.; Bachér, J.; Kaartinen, T.; Wahlström, M.; Salminen, J. The effect of flotation and parameters for bioleaching of printed circuit boards. Miner. Eng. 2015, 75, 26–31. [Google Scholar] [CrossRef]
- Van Yken, J.; Cheng, K.Y.; Boxall, N.J.; Nikoloski, A.N.; Moheimani, N.; Valix, M.; Kaksonen, A.H. An integrated biohydrometallurgical approach for the extraction of base metals from printed circuit boards. Hydrometallurgy 2023, 216, 105998. [Google Scholar] [CrossRef]
- N2s. Available online: https://www.n2s.co.uk/ (accessed on 31 December 2022).
- Abdel Azim, A.; Bellini, R.; Vizzarro, A.; Bassani, I.; Pirri, C.F.; Menin, B. Highlighting the role of archaea in urban mine waste exploitation and valorisation. Recycling 2023, 8, 20. [Google Scholar] [CrossRef]
- Thompson, V.S.; Gupta, M.; Jin, H.; Vahidi, E.; Yim, M.; Jindra, M.A.; Reed, D.W. Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials. ACS Sustain. Chem. Eng. 2018, 6, 1602–1609. [Google Scholar] [CrossRef]
- Andrianandraina, S.H.; Alamdari, H.; Blais, J.F. Mass balance and techno-economic study of a complete treatment chain of bio-oxidation for the extraction and recovery of precious metals from gold ore. Miner. Eng. 2023, 202, 108247. [Google Scholar] [CrossRef]
- Bryan, C.G.; Watkin, E.L.; McCredden, T.J.; Wong, Z.R.; Harrison, S.T.L.; Kaksonen, A.H. The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy 2015, 152, 33–43. [Google Scholar] [CrossRef]
- Jin, H.; Reed, D.W.; Thompson, V.S.; Fujita, Y.; Jiao, Y.; Crain-Zamora, M.; Fisher, J.; Scalzone, K.; Griffel, M.; Hartley, D.; et al. Sustainable bioleaching of rare earth elements from industrial waste materials using agricultural wastes. ACS Sustain. Chem. Eng. 2019, 7, 15311–15319. [Google Scholar] [CrossRef]
- Maluleke, M.D.; Kotsiopoulos, A.; Govender-Opitz, E.; Harrison, S.T. Bioleaching of printed circuit boards in a two-stage reactor system with enhanced ferric iron regeneration in a re-circulating packed-bed reactor from PCB leaching. Miner. Eng. 2024, 218, 109000. [Google Scholar] [CrossRef]
Method | Cost (USD) (Below 1 kt) | Cost (USD) (5 kt) | Cost (USD) (10 kt) |
---|---|---|---|
Manual | ~500–1000 | ~350,000 | ~400,000 |
Mechanical | ~50,000 | ~110,000 | ~350,000 |
Heating | ~60,000 | ~90,000 | ~150,000 |
Bacteria | Waste | Leaching (%) | Leaching Condition | Leaching Agent (mg/L) | Reference |
---|---|---|---|---|---|
P. balearica SAE1 | PCBs | Au: 68.5 Ag: 33.8 | Pulp density: 1.5%, 30 °C, 7 d | Glycine: 5000 | [56] |
P. Chlororaphis | PCBs | Au: 8.2 Ag: 12.1 | Pulp density: 1.6%, 25 °C, 3 d | Cyanide: 8.71 | [57] |
C. violaceum | PCBs | Au: 11.3 | Pulp density: 1.5%, 30 °C, 8d | Cyanide: 68 | [58] |
C. violaceum | Landfill of e-waste | Au: 16 | Pulp density: 0.5%,30 °C, 8d | Cyanide: 5–15 | [59] |
P. biofilm | PCBs | Ag: 14.7 | Pulp density: 2%, 25 °C, 7 d | Cyanide: 5 | [60] |
F. casuarinae | PCBs | Au: 75 | Pulp density: 0.2%, 28 °C, 30 d | Biomass: 3620 | [37] |
Agent (M) | Condition | Au (%) | Waste | References |
---|---|---|---|---|
S2O32− 0.072, NH3 0.266, Cu2+ 0.01 | 20–25 °C, 400 rpm, 5 min | ~50% | Printed circuit boards | [63] |
S2O32− 0.2, NH3 0.2, Cu2+ 0.0015 | Pulp 30%, 30 °C, aeration (0.2 L/min), 6 h | 89% | Pressure oxidised sulphide gold concentrate | [69] |
S2O32− 0.2, NH3 0.4, Cu2+ 0.01–0.02 | 30 °C, 300 rpm, 20%, 24 h, pH 11.5 | 30% | Gold ore | [70] |
S2O32− 0.08–0.12, NH3 0.1–0.2, Cu2+ 0.015 M | 20 °C, pH 10.5, 2 h | Up to 70% | Waste PCBs | [68] |
S2O32− 0.3, Cu2+ 0.05 | pH 10, pulp 10%, 15 h | 94% | Gold ore | [71] |
S2O32− 1, NH3 1, Cu2+ 0.01 | Pulp 10%, 24 h | 99% | Waste PCBs | [72] |
S2O32− 0.2, NH3 1, Co2+ 0.03 | 50 °C, pH 10 | 70% | Gold ore | [13] |
S2O32− 0.3, NH3 1, Cu2+ 0.03 | 25 °C, pH 10 | 72.7% | Gold ore | [13] |
S2O32− 0.5, NH3 1, Cu2+ 0.04 | 70 °C, pH 6, 1 h | 99% | Silver-bearing ore | [73] |
S2O32− 0.8, NH3 4, Cu2+ 0.05 | 25 °C, pH 10.2, 48 h | 90% | Gold-copper sulphide concentrate | [74] |
S2O32− 0.1, NH3 0.2, Cu2+ 0.015–0.03 | 25 °C, pH 9–11 | 15% | PCB | [75] |
Advantages | Disadvantages |
---|---|
Prevents passivation film on Au surface and accelerates dissolution rate | Volatile reagent |
Hinders the dissolution of undesirable minerals including silicates, carbonates, and iron oxides | Easy escape from vessel and environmental pollution |
Forms stable complexes with Cu and reduces the reactivity of Cu with thiosulphate | Toxic to humans and aquatic animals |
Difficult transport and store |
Additive (mM) | Au Dissolution (%) | Thiosulphate Consumption (%) | Reference |
---|---|---|---|
Humic acid (80) | Before: 72.6 | Before: 42.4 | [83] |
After: 81.4 | After: 13.2 | ||
EDTA (2.0) | Before: ~80 | Before: 9.63 | [7] |
After: 100 | After: 3.85 | ||
TEA (12) | Increased by 50 | Decreased by 10 | [65] |
EDDHA (450) | Before: 56.02 | Before: 10.31 | [80] |
After: 82.84 | After: 1.05 | ||
CTAB (60) | Before: 50 | Before: 1.3 | [76] |
After: 94.3 | After: 0.11 | ||
EDA (10) | Before: 60.3 | Before: 1.13 | [84] |
After: 80.3 | After: 0.414 |
Microorganism | Substrate | Thiosulphate Production Conditions | Produced Thiosulphate (mg/L) |
---|---|---|---|
Microcoleus chtonoplastes | Sulphide | pH 8, temperature 22 °C, anoxic photooxidation | 695 |
Methylophaga sulfidovorans | Ethanethiol, hydrogen sulphide | pH 7.5, temperature 22–30 °C | 672 |
Streptomyces fradiae | L-cystine | pH 7.5, temperature 22 °C, 20 days | 485 |
Pseudomonas sp. C27 | Sulphide, acetate | pH 7–8, temperature 30 °C, coupled with nitrogen fixation process | 451 |
Calothrix sp. HI 41 | Sulphide, hydrogen sulphide | Temperature 25 °C, anoxic photooxidation, 10 days | 392 |
Oscillatoria sp. BO 32 | Sulphide | Temperature 25 °C, anoxic photooxidation | 146 |
Sulfurimonas sp. CVO | Sulphur, sulphide | Temperature 30 °C | 112 |
Anabaena cylindrica | Sulphide | Temperature 25 °C | 73 |
E. coli | Sulphide | Temperature 37 °C | 45 |
T. neapolitanus | Sulphide | pH 5–9, temperature 30 °C, limited oxygen | 35 |
D. desulfuricans | Sulphide | pH 1–6, temperature 85 °C | 10 |
Mine | Location | Operator | Year Started | Production | Type |
---|---|---|---|---|---|
Obuasi | Ghana | Anglo Gold Ashanti | 1994 | Au: 200,000 ounces | Stirred-tank |
Laizhou (BioGold) | China | Sino Gold Mining | 2001 | Au: 75,000 ounces | Stirred-tank |
Olimpiada | Russia | Polyus Gold | 2001 | Au: 965,000 ounces | Stirred-tank |
Suzdal | Kazakhstan | Nordgold | 2005 | Au: 90,000 ounces | Stirred-tank |
Kokpatas | Uzbekistan | Navoi Mining and Metallurgical Combinat | 2009 | Au: 432,000 ounces | Stirred-tank |
Fosterville | Australia | Kirkland Lake Gold | 2005 | Au: 150,000 ounces | Stirred-tank |
Iranian Babak Copper Company | Iran | Iranian Babak Copper Company | 2020 | Cu: 50,000 t/y | Heap |
Zaldivar | Chile | Barrick Gold Corporation | 1995 | Cu: 150,000 t/y | Heap |
Whim Creek and Mons Cupri | Australia | Straits Resources | 2006 | Cu: 17,000 t/y | Heap |
Jinchuan Copper | China | Zijin Mining Group Ltd. | 2006 | Cu: 10,000 t/y | Heap |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilkhani, Z.; Aiouache, F. Bioleaching of Gold from Printed Circuit Boards: Potential Sustainability of Thiosulphate. Recycling 2025, 10, 87. https://doi.org/10.3390/recycling10030087
Ilkhani Z, Aiouache F. Bioleaching of Gold from Printed Circuit Boards: Potential Sustainability of Thiosulphate. Recycling. 2025; 10(3):87. https://doi.org/10.3390/recycling10030087
Chicago/Turabian StyleIlkhani, Zahra, and Farid Aiouache. 2025. "Bioleaching of Gold from Printed Circuit Boards: Potential Sustainability of Thiosulphate" Recycling 10, no. 3: 87. https://doi.org/10.3390/recycling10030087
APA StyleIlkhani, Z., & Aiouache, F. (2025). Bioleaching of Gold from Printed Circuit Boards: Potential Sustainability of Thiosulphate. Recycling, 10(3), 87. https://doi.org/10.3390/recycling10030087